982 resultados para Alpha-oxoketene
Resumo:
Accumulating evidence suggests that deposition of neurotoxic a-synuclein aggregates in the brain during the development of neurodegenerative diseases like Parkinson's disease can be curbed by anti-aggregation strategies that either disrupt or eliminate toxic aggregates. Curcumin, a dietary polyphenol exhibits anti-amyloid activity but the use of this polyphenol is limited owing to its instability. As chemical modifications in curcumin confiscate this limitation, such efforts are intensively performed to discover molecules with similar but enhanced stability and superior properties. This study focuses on the inhibitory effect of two stable analogs of curcumin viz. curcumin pyrazole and curcumin isoxazole and their derivatives against a-synuclein aggregation, fibrillization and toxicity. Employing biochemical, biophysical and cell based assays we discovered that curcumin pyrazole (3) and its derivative N-(3-Nitrophenylpyrazole) curcumin (15) exhibit remarkable potency in not only arresting fibrillization and disrupting preformed fibrils but also preventing formation of A11 conformation in the protein that imparts toxic effects. Compounds 3 and 15 also decreased neurotoxicity associated with fast aggregating A53T mutant form of a-synuclein. These two analogues of curcumin described here may therefore be useful therapeutic inhibitors for the treatment of a-synuclein amyloidosis and toxicity in Parkinson's disease and other synucleinopathies.
Resumo:
Hypoxia-inducible factor 1 alpha (HIF-1 alpha) is an important transcription factor that regulates different cellular responses to hypoxia. HIF-1 alpha is rapidly degraded by von Hippel-Lindau (VHL) protein under normoxic conditions and stabilized under hypoxia. A common variant of HIF-1 alpha (1772C > T) (rs 11549465) polymorphism, corresponding to an amino acid change from proline to serine at 582 position within the oxygen-dependent degradation domain, results in increased stability of the protein and altered transactivation of its target genes. The present study was aimed to find the association between HIF-1 alpha (1772C > T) (rs 11549465) polymorphism and breast cancer development. For this purpose, 348 primary breast cancer patients and 320 healthy and age-matched controls were genotyped through PCR-RFLP method. The genotype frequencies were compared between patients and controls, and their influence on clinical characteristics of breast cancer patients was analyzed. Our study revealed a significant increase of TT genotype in breast cancer patients compared to controls (p = 0.038). Further, TT genotype and T allele were found to be associated with progesterone receptor (PR)-negative status (p < 0.09). None of the clinical variables revealed significant association with HIF-1 alpha (1772C > T) (rs 11549465) polymorphism.
Resumo:
A novel method for alpha-hydroxylation of ketones using substoichiometric amount of iodine under metalfree conditions is described. This method has been successfully employed in synthesizing a variety of heterocyclic compounds, which are useful precursors. alpha-Hydroxylation of diketones and triketones are illustrated. This strategy provides a novel, efficient, mild and inexpensive method for alpha-hydroxylation of aryl ketones using a sub-stoichiometric amount of molecular iodine.
Resumo:
Thermoelectric properties of semiconducting beta-FeSi2 containing a homogeneous distribution of Si secondary phase have been studied. The synthesis was carried out using arc melting followed by the densification by uniaxial hot pressing. Endogenous beta-FeSi2/Si composites were produced by the eutectoid decomposition of high-temperature alpha-Fe2Si5 phase. The aging heat treatments have been carried out at various temperatures below the equilibrium eutectoid temperature for various durations in order to tune the size of the eutectoid product. Thermal properties of the samples were studied in the temperature range of 100-350 A degrees C. The microstructural investigations support the fact that the finest microstructure generated through the eutectoid decomposition of the alpha-Fe2Si5 metastable phase is responsible of the phonon scattering. The results suggest an opportunity to produce bulk iron silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance.
Resumo:
Minimization problems with respect to a one-parameter family of generalized relative entropies are studied. These relative entropies, which we term relative alpha-entropies (denoted I-alpha), arise as redundancies under mismatched compression when cumulants of compressed lengths are considered instead of expected compressed lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative alpha-entropies behave like squared Euclidean distance and satisfy the Pythagorean property. Minimizers of these relative alpha-entropies on closed and convex sets are shown to exist. Such minimizations generalize the maximum Renyi or Tsallis entropy principle. The minimizing probability distribution (termed forward I-alpha-projection) for a linear family is shown to obey a power-law. Other results in connection with statistical inference, namely subspace transitivity and iterated projections, are also established. In a companion paper, a related minimization problem of interest in robust statistics that leads to a reverse I-alpha-projection is studied.
Resumo:
In part I of this two-part work, certain minimization problems based on a parametric family of relative entropies (denoted I-alpha) were studied. Such minimizers were called forward I-alpha-projections. Here, a complementary class of minimization problems leading to the so-called reverse I-alpha-projections are studied. Reverse I-alpha-projections, particularly on log-convex or power-law families, are of interest in robust estimation problems (alpha > 1) and in constrained compression settings (alpha < 1). Orthogonality of the power-law family with an associated linear family is first established and is then exploited to turn a reverse I-alpha-projection into a forward I-alpha-projection. The transformed problem is a simpler quasi-convex minimization subject to linear constraints.
Resumo:
Estrogen signalling is critical for ovarian differentiation in reptiles with temperature-dependent sex determination (TSD). To elucidate the involvement of estrogen in this process, adrenal-kidney-gonadal (AKG) expression of estrogen receptor (ER alpha) was studied at female-producing temperature (FPT) in the developing embryos of the lizard, Calotes versicolor which exhibits a distinct pattern of TSD. The eggs of this lizard were incubated at 31.5 +/- 0.5 degrees C (100% FPT). The torso of embryos containing adrenal-kidney-gonadal complex (AKG) was collected during different stages of development and subjected to Western blotting and immunohistochemistry analysis. The ER alpha, antibody recognized two protein bands with apparent molecular weight similar to 55 and similar to 45 kDa in the total protein extracts of embryonic AKG complex of C. versicolor. The observed results suggest the occurrence of isoforms of ER alpha. The differential expression of two different protein isoforms may reveal their distinct role in cell proliferation during gonadal differentiation. This is the first report to reveal two isoforms of the ER alpha in a reptile during development. Immunohistochemical studies reveal a weak, but specific, cytoplasmic ER alpha immunostaining exclusively in the AKG during late thermo-sensitive period suggesting the responsiveness of AKG to estrogens before gonadal differentiation at FPT. Further, cytoplasmic as well as nuclear expression of ER alpha in the medulla and in oogonia of the cortex (faint activity) at gonadal differentiation stage suggests that the onset of gonadal estrogen activity coincides with sexual differentiation of gonad. Intensity and pattern of the immunoreactions of ER alpha in the medullary region at FPT suggest endogenous production of estrogen which may act in a paracrine fashion to induce neighboring cells into ovarian differentiation pathway. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Although several factors have been suggested to contribute to thermostability, the stabilization strategies used by proteins are still enigmatic. Studies on a recombinant xylanase from Bacilllus sp. NG-27 (RBSX), which has the ubiquitous (beta/alpha)(8)-triosephosphate isomerase barrel fold, showed that just a single mutation, V1L, although not located in any secondary structural element, markedly enhanced the stability from 70 degrees C to 75 degrees C without loss of catalytic activity. Conversely, the V1A mutation at the same position decreased the stability of the enzyme from 70 degrees C to 68 degrees C. To gain structural insights into how a single extreme N-terminus mutation can markedly influence the thermostability of the enzyme, we determined the crystal structure of RBSX and the two mutants. On the basis of computational analysis of their crystal structures, including residue interaction networks, we established a link between N-terminal to C-terminal contacts and RBSX thermostability. Our study reveals that augmenting N-terminal to C-terminal noncovalent interactions is associated with enhancement of the stability of the enzyme. In addition, we discuss several lines of evidence supporting a connection between N-terminal to C-terminal noncovalent interactions and protein stability in different proteins. We propose that the strategy of mutations at the termini could be exploited with a view to modulate stability without compromising enzymatic activity, or in general, protein function in diverse folds where N and C termini are in close proximity. Database The coordinates of RBSX, V1A and V1L have been deposited in the PDB database under the accession numbers 4QCE, 4QCF, and 4QDM, respectively
Resumo:
The variation of hardness as a function of the number of carbon atoms in alpha,omega-alkanedicarboxylic acids, CNH2N-2O4 (4 <= N <= 9), was examined by recourse to nanoindentation on the major faces of single crystals. Hardness exhibits odd-even alternation, with the odd acids being softer and the even ones harder; the differences decrease with increasing chain length. These variations are similar to those seen for other mechanical, physical, and thermal properties of these diacids. The softness of odd acids is rationalized due to strained molecular conformations in them, which facilitate easier plastic deformation. Relationships between structural features, such as interplanar spacing, interlayer separation distance, molecular chain length, and signatures of the nanoindentation responses, namely, discrete displacement bursts, were also examined. Shear sliding of molecular layers past each other during indentation is key to the mechanism for plastic deformation in these organic crystals.
Resumo:
A cascade aldol cyclization reaction between 3-isothiocyanato oxindoles and alpha-ketophosphonates has been developed for the synthesis of beta-amino-alpha-hydroxyphosphonate derivatives. Catalyzed by a quinine-based tertiary amino-thiourea derivative, this reaction delivers 2-thioxooxazolidinyl phosphonates based on a spirooxindole scaffold bearing two contiguous quaternary stereogenic centers in high yields with excellent diastereo- (up to >20:1 dr) and enantioselectivities (up to >99:1 er).
Resumo:
The ESRRA gene encodes a transcription factor and regulates several genes, such as WNT11 and OPN, involved in tumorigenesis. It is upregulated in several cancers, including OSCC. We have previously shown that the tumor suppressor miR-125a targets ESRRA, and its downregulation causes upregulation of ESRRA in OSCC. Upregulation of ESRRA in the absence of downregulation of miR-125a in a subset of OSCC samples suggests the involvement of an alternative mechanism. Using TaqMan (R) copy number assay, here we report for the first time that the genomic amplification of ESRRA causes its upregulation in a subset of OSCC samples. Ectopic overexpression of ESRRA led to accelerated cell proliferation, anchorage-independent cell growth and invasion, and inhibited apoptosis. Whereas, knockdown of ESRRA expression by siRNA led to reduced cell proliferation, anchorage-independent cell growth and invasion, and accelerated apoptosis. Furthermore, the delivery of a synthetic biostable ESRRA siRNA to OSCC cells resulted in regression of xenografts in nude mice. Thus, the genomic amplification of ESRRA is another novel mechanism for its upregulation in OSCC. Based on our in vitro and in vivo experiments, we suggest that targeting ESRRA by siRNA could be a novel therapeutic strategy for OSCC and other cancers.
Resumo:
Tetrabutyl ammonium iodide (TBAI) catalyzed alpha-aminoxylation of ketones using aq. TBHP as an oxidant has been accomplished. We have shown that the CDC (cross dehydrogenative coupling) reactions of ketones with N-hydroxyimidates such as N-hydroxysuccinimide (NHSI), N-hydroxyphthalimide (NHPI), N-hydroxybenzotriazole (HOBt) and 1-hydroxy-7-azabenzotriazole (HOAt) lead to the corresponding oxygenated products in good to moderate yields. The application of this method has been demonstrated by transforming a few coupled products into synthetically useful intermediates and products.
Resumo:
In this work, we have reported a new approach on the use of stimuli-responsive molecularly imprinted polymer (MIP) for trace level sensing of alpha-fetoprotein (AFP), which is a well know cancer biomarker. The stimuli-responsive MIP is composed of three components, a thermo-responsive monomer, a pH responsive component (tyrosine derivative) and a highly fluorescent vinyl silane modified carbon dot. The synthesized AFP-imprinted polymer possesses excellent selectivity towards their template molecule and dual-stimuli responsive behavior. Along with this, the imprinted polymer was also explored as `OR' logic gate with two stimuli (pH and temperature) as inputs. However, the non-imprinted polymers did not have such `OR' gate property, which confirms the role of template binding. The imprinted polymer was also used for estimation of AFP in the concentration range of 3.96-80.0 ng mL(-1), with limit of detection (LOD) 0.42 ng mL(-1). The role of proposed sensor was successfully exploited for analysis of AFP in real human blood plasma, serum and urine sample. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A ligand controlled selective hydroborylation of alkynes to alpha- or beta-vinylboronates has been developed using a Pd catalyst. The high alpha-selectivity displayed by this reaction can be switched to furnish beta-vinylboronates by altering the ligand from a trialkylphosphine to N-heterocyclic carbene. A variety of terminal alkynes are shown to furnish the corresponding alpha- or beta-vinylboronates in good to excellent selectivity and yield. The mechanistic studies suggest that the solvent is the proton source and bromobenzene functions as an important additive in driving this reaction forward.
Resumo:
A ligand controlled selective hydroborylation of alkynes to alpha- or beta-vinylboronates has been developed using a Pd catalyst. The high alpha-selectivity displayed by this reaction can be switched to furnish beta-vinylboronates by altering the ligand from a trialkylphosphine to N-heterocyclic carbene. A variety of terminal alkynes are shown to furnish the corresponding alpha- or beta-vinylboronates in good to excellent selectivity and yield. The mechanistic studies suggest that the solvent is the proton source and bromobenzene functions as an important additive in driving this reaction forward.