962 resultados para Algebraic Integers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pattern and Structure Mathematics Awareness Project (PASMAP) has investigated the development of patterning and early algebraic reasoning among 4 to 8 year olds over a series of related studies. We assert that an awareness of mathematical pattern and structure enables mathematical thinking and simple forms of generalisation from an early age. The project aims to promote a strong foundation for mathematical development by focusing on critical, underlying features of mathematics learning. This paper provides an overview of key aspects of the assessment and intervention, and analyses of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas. A purposive sample of four large primary schools, two in Sydney and two in Brisbane, representing 316 students from diverse socio-economic and cultural contexts, participated in the evaluation throughout the 2009 school year and a follow-up assessment in 2010. Two different mathematics programs were implemented: in each school, two Kindergarten teachers implemented the PASMAP and another two implemented their regular program. The study shows that both groups of students made substantial gains on the ‘I Can Do Maths’ assessment and a Pattern and Structure Assessment (PASA) interview, but highly significant differences were found on the latter with PASMAP students outperforming the regular group on PASA scores. Qualitative analysis of students’ responses for structural development showed increased levels for the PASMAP students; those categorised as low ability developed improved structural responses over a relatively short period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The steady problem of free surface flow due to a submerged line source is revisited for the case in which the fluid depth is finite and there is a stagnation point on the free surface directly above the source. Both the strength of the source and the fluid speed in the far field are measured by a dimensionless parameter, the Froude number. By applying techniques in exponential asymptotics, it is shown that there is a train of periodic waves on the surface of the fluid with an amplitude which is exponentially small in the limit that the Froude number vanishes. This study clarifies that periodic waves do form for flows due to a source, contrary to a suggestion by Chapman & Vanden-Broeck (2006, J. Fluid Mech., 567, 299--326). The exponentially small nature of the waves means they appear beyond all orders of the original power series expansion; this result explains why attempts at describing these flows using a finite number of terms in an algebraic power series incorrectly predict a flat free surface in the far field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ambiguity resolution plays a crucial role in real time kinematic GNSS positioning which gives centimetre precision positioning results if all the ambiguities in each epoch are correctly fixed to integers. However, the incorrectly fixed ambiguities can result in large positioning offset up to several meters without notice. Hence, ambiguity validation is essential to control the ambiguity resolution quality. Currently, the most popular ambiguity validation is ratio test. The criterion of ratio test is often empirically determined. Empirically determined criterion can be dangerous, because a fixed criterion cannot fit all scenarios and does not directly control the ambiguity resolution risk. In practice, depending on the underlying model strength, the ratio test criterion can be too conservative for some model and becomes too risky for others. A more rational test method is to determine the criterion according to the underlying model and user requirement. Miss-detected incorrect integers will lead to a hazardous result, which should be strictly controlled. In ambiguity resolution miss-detected rate is often known as failure rate. In this paper, a fixed failure rate ratio test method is presented and applied in analysis of GPS and Compass positioning scenarios. A fixed failure rate approach is derived from the integer aperture estimation theory, which is theoretically rigorous. The criteria table for ratio test is computed based on extensive data simulations in the approach. The real-time users can determine the ratio test criterion by looking up the criteria table. This method has been applied in medium distance GPS ambiguity resolution but multi-constellation and high dimensional scenarios haven't been discussed so far. In this paper, a general ambiguity validation model is derived based on hypothesis test theory, and fixed failure rate approach is introduced, especially the relationship between ratio test threshold and failure rate is examined. In the last, Factors that influence fixed failure rate approach ratio test threshold is discussed according to extensive data simulation. The result shows that fixed failure rate approach is a more reasonable ambiguity validation method with proper stochastic model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Authenticated Encryption (AE) is the cryptographic process of providing simultaneous confidentiality and integrity protection to messages. This approach is more efficient than applying a two-step process of providing confidentiality for a message by encrypting the message, and in a separate pass providing integrity protection by generating a Message Authentication Code (MAC). AE using symmetric ciphers can be provided by either stream ciphers with built in authentication mechanisms or block ciphers using appropriate modes of operation. However, stream ciphers have the potential for higher performance and smaller footprint in hardware and/or software than block ciphers. This property makes stream ciphers suitable for resource constrained environments, where storage and computational power are limited. There have been several recent stream cipher proposals that claim to provide AE. These ciphers can be analysed using existing techniques that consider confidentiality or integrity separately; however currently there is no existing framework for the analysis of AE stream ciphers that analyses these two properties simultaneously. This thesis introduces a novel framework for the analysis of AE using stream cipher algorithms. This thesis analyzes the mechanisms for providing confidentiality and for providing integrity in AE algorithms using stream ciphers. There is a greater emphasis on the analysis of the integrity mechanisms, as there is little in the public literature on this, in the context of authenticated encryption. The thesis has four main contributions as follows. The first contribution is the design of a framework that can be used to classify AE stream ciphers based on three characteristics. The first classification applies Bellare and Namprempre's work on the the order in which encryption and authentication processes take place. The second classification is based on the method used for accumulating the input message (either directly or indirectly) into the into the internal states of the cipher to generate a MAC. The third classification is based on whether the sequence that is used to provide encryption and authentication is generated using a single key and initial vector, or two keys and two initial vectors. The second contribution is the application of an existing algebraic method to analyse the confidentiality algorithms of two AE stream ciphers; namely SSS and ZUC. The algebraic method is based on considering the nonlinear filter (NLF) of these ciphers as a combiner with memory. This method enables us to construct equations for the NLF that relate the (inputs, outputs and memory of the combiner) to the output keystream. We show that both of these ciphers are secure from this type of algebraic attack. We conclude that using a keydependent SBox in the NLF twice, and using two different SBoxes in the NLF of ZUC, prevents this type of algebraic attack. The third contribution is a new general matrix based model for MAC generation where the input message is injected directly into the internal state. This model describes the accumulation process when the input message is injected directly into the internal state of a nonlinear filter generator. We show that three recently proposed AE stream ciphers can be considered as instances of this model; namely SSS, NLSv2 and SOBER-128. Our model is more general than a previous investigations into direct injection. Possible forgery attacks against this model are investigated. It is shown that using a nonlinear filter in the accumulation process of the input message when either the input message or the initial states of the register is unknown prevents forgery attacks based on collisions. The last contribution is a new general matrix based model for MAC generation where the input message is injected indirectly into the internal state. This model uses the input message as a controller to accumulate a keystream sequence into an accumulation register. We show that three current AE stream ciphers can be considered as instances of this model; namely ZUC, Grain-128a and Sfinks. We establish the conditions under which the model is susceptible to forgery and side-channel attacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most powerful known primitive in public-key cryptography is undoubtedly elliptic curve pairings. Upon their introduction just over ten years ago the computation of pairings was far too slow for them to be considered a practical option. This resulted in a vast amount of research from many mathematicians and computer scientists around the globe aiming to improve this computation speed. From the use of modern results in algebraic and arithmetic geometry to the application of foundational number theory that dates back to the days of Gauss and Euler, cryptographic pairings have since experienced a great deal of improvement. As a result, what was an extremely expensive computation that took several minutes is now a high-speed operation that takes less than a millisecond. This thesis presents a range of optimisations to the state-of-the-art in cryptographic pairing computation. Both through extending prior techniques, and introducing several novel ideas of our own, our work has contributed to recordbreaking pairing implementations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this PhD research program is to investigate numerical methods for simulating variably-saturated flow and sea water intrusion in coastal aquifers in a high-performance computing environment. The work is divided into three overlapping tasks: to develop an accurate and stable finite volume discretisation and numerical solution strategy for the variably-saturated flow and salt transport equations; to implement the chosen approach in a high performance computing environment that may have multiple GPUs or CPU cores; and to verify and test the implementation. The geological description of aquifers is often complex, with porous materials possessing highly variable properties, that are best described using unstructured meshes. The finite volume method is a popular method for the solution of the conservation laws that describe sea water intrusion, and is well-suited to unstructured meshes. In this work we apply a control volume-finite element (CV-FE) method to an extension of a recently proposed formulation (Kees and Miller, 2002) for variably saturated groundwater flow. The CV-FE method evaluates fluxes at points where material properties and gradients in pressure and concentration are consistently defined, making it both suitable for heterogeneous media and mass conservative. Using the method of lines, the CV-FE discretisation gives a set of differential algebraic equations (DAEs) amenable to solution using higher-order implicit solvers. Heterogeneous computer systems that use a combination of computational hardware such as CPUs and GPUs, are attractive for scientific computing due to the potential advantages offered by GPUs for accelerating data-parallel operations. We present a C++ library that implements data-parallel methods on both CPU and GPUs. The finite volume discretisation is expressed in terms of these data-parallel operations, which gives an efficient implementation of the nonlinear residual function. This makes the implicit solution of the DAE system possible on the GPU, because the inexact Newton-Krylov method used by the implicit time stepping scheme can approximate the action of a matrix on a vector using residual evaluations. We also propose preconditioning strategies that are amenable to GPU implementation, so that all computationally-intensive aspects of the implicit time stepping scheme are implemented on the GPU. Results are presented that demonstrate the efficiency and accuracy of the proposed numeric methods and formulation. The formulation offers excellent conservation of mass, and higher-order temporal integration increases both numeric efficiency and accuracy of the solutions. Flux limiting produces accurate, oscillation-free solutions on coarse meshes, where much finer meshes are required to obtain solutions with equivalent accuracy using upstream weighting. The computational efficiency of the software is investigated using CPUs and GPUs on a high-performance workstation. The GPU version offers considerable speedup over the CPU version, with one GPU giving speedup factor of 3 over the eight-core CPU implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modernized GPS and GLONASS, together with new GNSS systems, BeiDou and Galileo, offer code and phase ranging signals in three or more carriers. Traditionally, dual-frequency code and/or phase GPS measurements are linearly combined to eliminate effects of ionosphere delays in various positioning and analysis. This typical treatment method has imitations in processing signals at three or more frequencies from more than one system and can be hardly adapted itself to cope with the booming of various receivers with a broad variety of singles. In this contribution, a generalized-positioning model that the navigation system independent and the carrier number unrelated is promoted, which is suitable for both single- and multi-sites data processing. For the synchronization of different signals, uncalibrated signal delays (USD) are more generally defined to compensate the signal specific offsets in code and phase signals respectively. In addition, the ionospheric delays are included in the parameterization with an elaborate consideration. Based on the analysis of the algebraic structures, this generalized-positioning model is further refined with a set of proper constrains to regularize the datum deficiency of the observation equation system. With this new model, uncalibrated signal delays (USD) and ionospheric delays are derived for both GPS and BeiDou with a large dada set. Numerical results demonstrate that, with a limited number of stations, the uncalibrated code delays (UCD) are determinate to a precision of about 0.1 ns for GPS and 0.4 ns for BeiDou signals, while the uncalibrated phase delays (UPD) for L1 and L2 are generated with 37 stations evenly distributed in China for GPS with a consistency of about 0.3 cycle. Extra experiments concerning the performance of this novel model in point positioning with mixed-frequencies of mixed-constellations is analyzed, in which the USD parameters are fixed with our generated values. The results are evaluated in terms of both positioning accuracy and convergence time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sequences with optimal correlation properties are much sought after for applications in communication systems. In 1980, Alltop (\emph{IEEE Trans. Inf. Theory} 26(3):350-354, 1980) described a set of sequences based on a cubic function and showed that these sequences were optimal with respect to the known bounds on auto and crosscorrelation. Subsequently these sequences were used to construct mutually unbiased bases (MUBs), a structure of importance in quantum information theory. The key feature of this cubic function is that its difference function is a planar function. Functions with planar difference functions have been called \emph{Alltop functions}. This paper provides a new family of Alltop functions and establishes the use of Alltop functions for construction of sequence sets and MUBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streamciphers are common cryptographic algorithms used to protect the confidentiality of frame-based communications like mobile phone conversations and Internet traffic. Streamciphers are ideal cryptographic algorithms to encrypt these types of traffic as they have the potential to encrypt them quickly and securely, and have low error propagation. The main objective of this thesis is to determine whether structural features of keystream generators affect the security provided by stream ciphers.These structural features pertain to the state-update and output functions used in keystream generators. Using linear sequences as keystream to encrypt messages is known to be insecure. Modern keystream generators use nonlinear sequences as keystream.The nonlinearity can be introduced through a keystream generator's state-update function, output function, or both. The first contribution of this thesis relates to nonlinear sequences produced by the well-known Trivium stream cipher. Trivium is one of the stream ciphers selected in a final portfolio resulting from a multi-year project in Europe called the ecrypt project. Trivium's structural simplicity makes it a popular cipher to cryptanalyse, but to date, there are no attacks in the public literature which are faster than exhaustive keysearch. Algebraic analyses are performed on the Trivium stream cipher, which uses a nonlinear state-update and linear output function to produce keystream. Two algebraic investigations are performed: an examination of the sliding property in the initialisation process and algebraic analyses of Trivium-like streamciphers using a combination of the algebraic techniques previously applied separately by Berbain et al. and Raddum. For certain iterations of Trivium's state-update function, we examine the sets of slid pairs, looking particularly to form chains of slid pairs. No chains exist for a small number of iterations.This has implications for the period of keystreams produced by Trivium. Secondly, using our combination of the methods of Berbain et al. and Raddum, we analysed Trivium-like ciphers and improved on previous on previous analysis with regards to forming systems of equations on these ciphers. Using these new systems of equations, we were able to successfully recover the initial state of Bivium-A.The attack complexity for Bivium-B and Trivium were, however, worse than exhaustive keysearch. We also show that the selection of stages which are used as input to the output function and the size of registers which are used in the construction of the system of equations affect the success of the attack. The second contribution of this thesis is the examination of state convergence. State convergence is an undesirable characteristic in keystream generators for stream ciphers, as it implies that the effective session key size of the stream cipher is smaller than the designers intended. We identify methods which can be used to detect state convergence. As a case study, theMixer streamcipher, which uses nonlinear state-update and output functions to produce keystream, is analysed. Mixer is found to suffer from state convergence as the state-update function used in its initialisation process is not one-to-one. A discussion of several other streamciphers which are known to suffer from state convergence is given. From our analysis of these stream ciphers, three mechanisms which can cause state convergence are identified.The effect state convergence can have on stream cipher cryptanalysis is examined. We show that state convergence can have a positive effect if the goal of the attacker is to recover the initial state of the keystream generator. The third contribution of this thesis is the examination of the distributions of bit patterns in the sequences produced by nonlinear filter generators (NLFGs) and linearly filtered nonlinear feedback shift registers. We show that the selection of stages used as input to a keystream generator's output function can affect the distribution of bit patterns in sequences produced by these keystreamgenerators, and that the effect differs for nonlinear filter generators and linearly filtered nonlinear feedback shift registers. In the case of NLFGs, the keystream sequences produced when the output functions take inputs from consecutive register stages are less uniform than sequences produced by NLFGs whose output functions take inputs from unevenly spaced register stages. The opposite is true for keystream sequences produced by linearly filtered nonlinear feedback shift registers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pattern and Structure Mathematics Awareness Project (PASMAP) has investigated the development of patterning and early algebraic reasoning among 4 to 8 year olds over a series of related studies. We assert that an awareness of mathematical pattern and structure (AMPS) enables mathematical thinking and simple forms of generalization from an early age. This paper provides an overview of key findings of the Reconceptualizing Early Mathematics Learning empirical evaluation study involving 316 Kindergarten students from 4 schools. The study found highly significant differences on PASA scores for PASMAP students. Analysis of structural development showed increased levels for the PASMAP students; those categorised as low ability developed improved structural responses over a short period of time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-dimensional ship wave patterns, such as the shape of steep waves close to their limiting configuration, in a manner that has been possible in the two-dimensional analogue for some time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many large-scale GNSS CORS networks have been deployed around the world to support various commercial and scientific applications. To make use of these networks for real-time kinematic positioning services, one of the major challenges is the ambiguity resolution (AR) over long inter-station baselines in the presence of considerable atmosphere biases. Usually, the widelane ambiguities are fixed first, followed by the procedure of determination of the narrowlane ambiguity integers based on the ionosphere-free model in which the widelane integers are introduced as known quantities. This paper seeks to improve the AR performance over long baseline through efficient procedures for improved float solutions and ambiguity fixing. The contribution is threefold: (1) instead of using the ionosphere-free measurements, the absolute and/or relative ionospheric constraints are introduced in the ionosphere-constrained model to enhance the model strength, thus resulting in the better float solutions; (2) the realistic widelane ambiguity precision is estimated by capturing the multipath effects due to the observation complexity, leading to improvement of reliability of widelane AR; (3) for the narrowlane AR, the partial AR for a subset of ambiguities selected according to the successively increased elevation is applied. For fixing the scalar ambiguity, an error probability controllable rounding method is proposed. The established ionosphere-constrained model can be efficiently solved based on the sequential Kalman filter. It can be either reduced to some special models simply by adjusting the variances of ionospheric constraints, or extended with more parameters and constraints. The presented methodology is tested over seven baselines of around 100 km from USA CORS network. The results show that the new widelane AR scheme can obtain the 99.4 % successful fixing rate with 0.6 % failure rate; while the new rounding method of narrowlane AR can obtain the fix rate of 89 % with failure rate of 0.8 %. In summary, the AR reliability can be efficiently improved with rigorous controllable probability of incorrectly fixed ambiguities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We offer an exposition of Boneh, Boyen, and Goh’s “uber-assumption” family for analyzing the validity and strength of pairing assumptions in the generic-group model, and augment the original BBG framework with a few simple but useful extensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

WG-7 is a stream cipher based on WG stream cipher and has been designed by Luo et al. (2010). This cipher is designed for low cost and lightweight applications (RFID tags and mobile phones, for instance). This paper addresses cryptographic weaknesses of WG-7 stream cipher. We show that the key stream generated by WG-7 can be distinguished from a random sequence after knowing 213.5 keystream bits and with a negligible error probability. Also, we investigate the security of WG-7 against algebraic attacks. An algebraic key recovery attack on this cipher is proposed. The attack allows to recover both the internal state and the secret key with the time complexity about 2/27.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boolean functions and their Möbius transforms are involved in logical calculation, digital communications, coding theory and modern cryptography. So far, little is known about the relations of Boolean functions and their Möbius transforms. This work is composed of three parts. In the first part, we present relations between a Boolean function and its Möbius transform so as to convert the truth table/algebraic normal form (ANF) to the ANF/truth table of a function in different conditions. In the second part, we focus on the special case when a Boolean function is identical to its Möbius transform. We call such functions coincident. In the third part, we generalize the concept of coincident functions and indicate that any Boolean function has the coincidence property even it is not coincident.