851 resultados para Agent-based brokerage platform


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets worldwide are complex and dynamic environments with very particular characteristics. These are the result of electricity markets’ restructuring and evolution into regional and continental scales, along with the constant changes brought by the increasing necessity for an adequate integration of renewable energy sources. The rising complexity and unpredictability in electricity markets has increased the need for the intervenient entities in foreseeing market behaviour. Market players and regulators are very interested in predicting the market’s behaviour. Market players need to understand the market behaviour and operation in order to maximize their profits, while market regulators need to test new rules and detect market inefficiencies before they are implemented. The growth of usage of simulation tools was driven by the need for understanding those mechanisms and how the involved players' interactions affect the markets' outcomes. Multi-agent based software is particularly well fitted to analyse dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. Several modelling tools directed to the study of restructured wholesale electricity markets have emerged. Still, they have a common limitation: the lack of interoperability between the various systems to allow the exchange of information and knowledge, to test different market models and to allow market players from different systems to interact in common market environments. This dissertation proposes the development and implementation of ontologies for semantic interoperability between multi-agent simulation platforms in the scope of electricity markets. The added value provided to these platforms is given by enabling them sharing their knowledge and market models with other agent societies, which provides the means for an actual improvement in current electricity markets studies and development. The proposed ontologies are implemented in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) and tested through the interaction between MASCEM agents and agents from other multi-agent based simulators. The implementation of the proposed ontologies has also required a complete restructuring of MASCEM’s architecture and multi-agent model, which is also presented in this dissertation. The results achieved in the case studies allow identifying the advantages of the novel architecture of MASCEM, and most importantly, the added value of using the proposed ontologies. They facilitate the integration of independent multi-agent simulators, by providing a way for communications to be understood by heterogeneous agents from the various systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a molecular-scale agent-based model for the simulation of enzymatic reactions at experimentally measured concentrations. The model incorporates stochasticity and spatial dependence, using diffusing and reacting particles with physical dimensions. We developed strategies to adjust and validate the enzymatic rates and diffusion coefficients to the information required by the computational agents, i.e., collision efficiency, interaction logic between agents, the time scale associated with interactions (e.g., kinetics), and agent velocity. Also, we tested the impact of molecular location (a source of biological noise) in the speed at which the reactions take place. Simulations were conducted for experimental data on the 2-hydroxymuconate tautomerase (EC 5.3.2.6, UniProt ID Q01468) and the Steroid Delta-isomerase (EC 5.3.3.1, UniProt ID P07445). Obtained results demonstrate that our approach is in accordance to existing experimental data and long-term biophysical and biochemical assumptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the classical Bertrand model when consumers exhibit some strategic behavior in deciding from which seller they will buy. We use two related but different tools. Both consider a probabilistic learning (or evolutionary) mechanism, and in the two of them consumers' behavior in uences the competition between the sellers. The results obtained show that, in general, developing some sort of loyalty is a good strategy for the buyers as it works in their best interest. First, we consider a learning procedure described by a deterministic dynamic system and, using strong simplifying assumptions, we can produce a description of the process behavior. Second, we use nite automata to represent the strategies played by the agents and an adaptive process based on genetic algorithms to simulate the stochastic process of learning. By doing so we can relax some of the strong assumptions used in the rst approach and still obtain the same basic results. It is suggested that the limitations of the rst approach (analytical) provide a good motivation for the second approach (Agent-Based). Indeed, although both approaches address the same problem, the use of Agent-Based computational techniques allows us to relax hypothesis and overcome the limitations of the analytical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest projecte descriu una plataforma de simulació per a xarxes de sensors des de la perspectiva dels sistemes multi-agents. La plataforma s'ha dissenyat per facilitar la simulació de diferents aplicacions concretes de xarxes de sensors. A més, s'ha entregat com a artefacte del projecte IEA (Institucions Electròniques Autònomes, TIN2006-15662-C02-0) de l'IIIACSIC. Dins l'entorn de l'IEA, aquesta és l'eina que aporta les capacitats de simulació per donar suport al disseny d'algorismes adaptatius per a xarxes de sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest projecte consisteix en el disseny i desenvolupament d'una arquitectura de serveis sota el paradigma dels agents inteligents. El propòsit d'ADASMI (Architecture for Dynamic Agent Service Management and Interaction) és permetre la gestió i utilització de serveis per altres agents. L'arquitectura s'ha implementat utilitzant la plataforma d'agents de JADE i es pot utilitzar amb qualsevol altra plataforma que compleixi els estàndards d'IEEE FIPA. A més, és prou flexible com per adaptar-se en entorns dinàmics, com per exemple les xarxes ad-hoc en situacions d'emergència.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los servicios de salud son sistemas muy complejos, pero de alta importancia, especialmente en algunos momentos críticos, en todo el mundo. Los departamentos de urgencias pueden ser una de las áreas más dinámicas y cambiables de todos los servicios de salud y a la vez más vulnerables a dichos cambios. La mejora de esos departamentos se puede considerar uno de los grandes retos que tiene cualquier administrador de un hospital, y la simulación provee una manera de examinar este sistema tan complejo sin poner en peligro los pacientes que son atendidos. El objetivo de este trabajo ha sido el modelado de un departamento de urgencias y el desarrollo de un simulador que implementa este modelo con la finalidad de explorar el comportamiento y las características de dicho servicio de urgencias. El uso del simulador ofrece la posibilidad de visualizar el comportamiento del modelo con diferentes parámetros y servirá como núcleo de un sistema de ayuda a la toma de decisiones que pueda ser usado en departamentos de urgencias. El modelo se ha desarrollado con técnicas de modelado basado en agentes (ABM) que permiten crear modelos funcionalmente más próximos a la realidad que los modelos de colas o de dinámicas de sistemas, al permitir la inclusión de la singularidad que implica el modelado a nivel de las personas. Los agentes del modelo presentado, descritos internamente como máquinas de estados, representan a todo el personal del departamento de urgencias y los pacientes que usan este servicio. Un análisis del modelo a través de su implementación en el simulador muestra que el sistema se comporta de manera semejante a un departamento de urgencias real.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a l’Snider Entrepreneurial Research Center de la Wharton School de la University of Pennsilvanya y, EUA entre juliol i desembre del 2007. L’objectiu d’aquest projecte és estudiar la relació entre les estratègies de gestió del coneixement i les tecnologies de la informació i la comunicació (TIC) en l’evolució de les poblacions d’organitzacions i els seus efectes en els patrons industrials d’aglomeració espacial. Per a això s’adopta una aproximació fonamentada en la utilització d'un model basats en agents per a obtenir hipòtesis significatives i provables sobre l’evolució de les poblacions d’organitzacions al si de clústers geogràfics. El model de simulació incorpora les perspectives i supòsits d’un marc conceptual, l’Espai de la Informació o I-Space. Això permet una conceptualització basada en la informació de l’entorn econòmic que té en compte les seves dimensions espacials i temporals. Mitjançant els paràmetres del model es dóna la possibilitat d’assignar estratègies específiques de gestió del coneixement als diversos agents i de localitzar-los en una posició de l’espai físic. La simulació mostra com l'adopció d'estratègies diverses pel que fa a la gestió del coneixement influeix en l'evolució de les organitzacions i de la seva localització espacial, i que aquesta evolució es veu modificada pel desenvolupament de les TIC. A través de la modelització de dos casos ben coneguts de clústers geogràfics d’alta tecnologia, com són Silicon Valley a Califòrnia i la Route 128 als voltants de Boston, s’estudia la interrelació entre les estratègies de gestió del coneixement adoptades per les empreses i la seva tria de localització espacial, i també com això és afectat per l’evolució de les tecnologies de la informació i de la comunicació (TIC). Els resultats obtinguts generen una sèrie d’hipòtesis de rica potencialitat sobre l’impacte del desenvolupament de les TIC en la dinàmica d’aquests clusters geogràfics. Concretament, es troba que la estructuració del coneixement i l’aglomeració espacial co-evolucionen i que aquesta coevolució es veu significativament alterada pel desenvolupament de les TIC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : Division of labour is one of the most fascinating aspects of social insects. The efficient allocation of individuals to a multitude of different tasks requires a dynamic adjustment in response to the demands of a changing environment. A considerable number of theoretical models have focussed on identifying the mechanisms allowing colonies to perform efficient task allocation. The large majority of these models are built on the observation that individuals in a colony vary in their propensity (response threshold) to perform different tasks. Since individuals with a low threshold for a given task stimulus are more likely to perform that task than individuals with a high threshold, infra-colony variation in individual thresholds results in colony division of labour. These theoretical models suggest that variation in individual thresholds is affected by the within-colony genetic diversity. However, the models have not considered the genetic architecture underlying the individual response thresholds. This is important because a better understanding of division of labour requires determining how genotypic variation relates to differences in infra-colony response threshold distributions. In this thesis, we investigated the combined influence on task allocation efficiency of both, the within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes underlying the response thresholds. We used an agent-based simulator to model a situation where workers in a colony had to perform either a regulatory task (where the amount of a given food item in the colony had to be maintained within predefined bounds) or a foraging task (where the quantity of a second type of food item collected had to be the highest possible). The performance of colonies was a function of workers being able to perform both tasks efficiently. To study the effect of within-colony genetic diversity, we compared the performance of colonies with queens mated with varying number of males. On the other hand, the influence of genetic architecture was investigated by varying the number of loci underlying the response threshold of the foraging and regulatory tasks. Artificial evolution was used to evolve the allelic values underlying the tasks thresholds. The results revealed that multiple matings always translated into higher colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or few genes for the foraging task's threshold. By contrast, higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes determining the threshold for the regulatory task only had a minor but incremental effect on colony performance. Overall, our numerical experiments indicate the importance of considering the effects of queen mating frequency, genetic architecture underlying task thresholds and the type of task performed when investigating the factors regulating the efficiency of division of labour in social insects. In this thesis we also investigate the task allocation efficiency of response threshold models and compare them with neural networks. While response threshold models are widely used amongst theoretical biologists interested in division of labour in social insects, our simulation reveals that they perform poorly compared to a neural network model. A major shortcoming of response thresholds is that they fail at one of the most crucial requirement of division of labour, the ability of individuals in a colony to efficiently switch between tasks under varying environmental conditions. Moreover, the intrinsic properties of the threshold models are that they lead to a large proportion of idle workers. Our results highlight these limitations of the response threshold models and provide an adequate substitute. Altogether, the experiments presented in this thesis provide novel contributions to the understanding of how division of labour in social insects is influenced by queen mating frequency and genetic architecture underlying worker task thresholds. Moreover, the thesis also provides a novel model of the mechanisms underlying worker task allocation that maybe more generally applicable than the widely used response threshold models. Resumé : La répartition du travail est l'un des aspects les plus fascinants des insectes vivant en société. Une allocation efficace de la multitude de différentes tâches entre individus demande un ajustement dynamique afin de répondre aux exigences d'un environnement en constant changement. Un nombre considérable de modèles théoriques se sont attachés à identifier les mécanismes permettant aux colonies d'effectuer une allocation efficace des tâches. La grande majorité des ces modèles sont basés sur le constat que les individus d'une même colonie diffèrent dans leur propension (inclination à répondre) à effectuer différentes tâches. Etant donné que les individus possédant un faible seuil de réponse à un stimulus associé à une tâche donnée sont plus disposés à effectuer cette dernière que les individus possédant un seuil élevé, les différences de seuils parmi les individus vivant au sein d'une même colonie mènent à une certaine répartition du travail. Ces modèles théoriques suggèrent que la variation des seuils des individus est affectée par la diversité génétique propre à la colonie. Cependant, ces modèles ne considèrent pas la structure génétique qui est à la base des seuils de réponse individuels. Ceci est très important car une meilleure compréhension de la répartition du travail requière de déterminer de quelle manière les variations génotypiques sont associées aux différentes distributions de seuils de réponse à l'intérieur d'une même colonie. Dans le cadre de cette thèse, nous étudions l'influence combinée de la variabilité génétique d'une colonie (qui prend son origine dans la variation du nombre d'accouplements des reines) avec le nombre de gènes supportant les seuils de réponse, vis-à-vis de la performance de l'allocation des tâches. Nous avons utilisé un simulateur basé sur des agents pour modéliser une situation où les travailleurs d'une colonie devaient accomplir une tâche de régulation (1a quantité d'une nourriture donnée doit être maintenue à l'intérieur d'un certain intervalle) ou une tâche de recherche de nourriture (la quantité d'une certaine nourriture doit être accumulée autant que possible). Dans ce contexte, 'efficacité des colonies tient en partie des travailleurs qui sont capable d'effectuer les deux tâches de manière efficace. Pour étudier l'effet de la diversité génétique d'une colonie, nous comparons l'efficacité des colonies possédant des reines qui s'accouplent avec un nombre variant de mâles. D'autre part, l'influence de la structure génétique a été étudiée en variant le nombre de loci à la base du seuil de réponse des deux tâches de régulation et de recherche de nourriture. Une évolution artificielle a été réalisée pour évoluer les valeurs alléliques qui sont à l'origine de ces seuils de réponse. Les résultats ont révélé que de nombreux accouplements se traduisaient toujours en une plus grande performance de la colonie, quelque soit le nombre de loci encodant les seuils des tâches de régulation et de recherche de nourriture. Cependant, les effets bénéfiques d'accouplements additionnels ont été particulièrement important lorsque la structure génétique des reines comprenait un ou quelques gènes pour le seuil de réponse pour la tâche de recherche de nourriture. D'autre part, un nombre plus élevé de gènes encodant la tâche de recherche de nourriture a diminué la performance de la colonie avec un effet nuisible d'autant plus fort lorsque les reines s'accouplent avec plusieurs mâles. Finalement, le nombre de gènes déterminant le seuil pour la tâche de régulation eu seulement un effet mineur mais incrémental sur la performance de la colonie. Pour conclure, nos expériences numériques révèlent l'importance de considérer les effets associés à la fréquence d'accouplement des reines, à la structure génétique qui est à l'origine des seuils de réponse pour les tâches ainsi qu'au type de tâche effectué au moment d'étudier les facteurs qui régulent l'efficacité de la répartition du travail chez les insectes vivant en communauté. Dans cette thèse, nous étudions l'efficacité de l'allocation des tâches des modèles prenant en compte des seuils de réponses, et les comparons à des réseaux de neurones. Alors que les modèles basés sur des seuils de réponse sont couramment utilisés parmi les biologistes intéressés par la répartition des tâches chez les insectes vivant en société, notre simulation montre qu'ils se révèlent peu efficace comparé à un modèle faisant usage de réseaux de neurones. Un point faible majeur des seuils de réponse est qu'ils échouent sur un point crucial nécessaire à la répartition des tâches, la capacité des individus d'une colonie à commuter efficacement entre des tâches soumises à des conditions environnementales changeantes. De plus, les propriétés intrinsèques des modèles basés sur l'utilisation de seuils conduisent à de larges populations de travailleurs inactifs. Nos résultats mettent en évidence les limites de ces modèles basés sur l'utilisation de seuils et fournissent un substitut adéquat. Ensemble, les expériences présentées dans cette thèse fournissent de nouvelles contributions pour comprendre comment la répartition du travail chez les insectes vivant en société est influencée par la fréquence d'accouplements des reines ainsi que par la structure génétique qui est à l'origine, pour un travailleur, du seuil de réponse pour une tâche. De plus, cette thèse fournit également un nouveau modèle décrivant les mécanismes qui sont à l'origine de l'allocation des tâches entre travailleurs, mécanismes qui peuvent être appliqué de manière plus générale que ceux couramment utilisés et basés sur des seuils de réponse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined drivers of article citations using 776 articles that were published from 1990-2012 in a broad-based and high-impact social sciences journal, The Leadership Quarterly. These articles had 1,191 unique authors having published and received in total (at the time of their most recent article published in our dataset) 16,817 articles and 284,777 citations, respectively. Our models explained 66.6% of the variance in citations and showed that quantitative, review, method, and theory articles were significantly more cited than were qualitative articles or agent-based simulations. As concerns quantitative articles, which constituted the majority of the sample, our model explained 80.3% of the variance in citations; some methods (e.g., use of SEM) and designs (e.g., meta-analysis), as well as theoretical approaches (e.g., use of transformational, charismatic, or visionary type-leadership theories) predicted higher article citations. Regarding the statistical conclusion validity of quantitative articles, articles having endogeneity threats received significantly fewer citations than did those using a more robust design or an estimation procedure that ensured correct causal estimation. We make several general recommendations on how to improve research practice and article citations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical studies indicate that the transition to parenthood is influenced by an individual's peer group. To study the mechanisms creating interdepen- dencies across individuals' transition to parenthood and its timing we apply an agent-based simulation model. We build a one-sex model and provide agents with three different characteristics regarding age, intended education and parity. Agents endogenously form their network based on social closeness. Network members then may influence the agents' transition to higher parity levels. Our numerical simulations indicate that accounting for social inter- actions can explain the shift of first-birth probabilities in Austria over the period 1984 to 2004. Moreover, we apply our model to forecast age-specific fertility rates up to 2016.