864 resultados para Advanced econometrics
Resumo:
BACKGROUND: Biliary tract cancer is an uncommon cancer with a poor outcome. We assembled data from the National Cancer Research Institute (UK) ABC-02 study and 10 international studies to determine prognostic outcome characteristics for patients with advanced disease. METHODS: Multivariable analyses of the final dataset from the ABC-02 study were carried out. All variables were simultaneously included in a Cox proportional hazards model, and backward elimination was used to produce the final model (using a significance level of 10%), in which the selected variables were associated independently with outcome. This score was validated externally by receiver operating curve (ROC) analysis using the independent international dataset. RESULTS: A total of 410 patients were included from the ABC-02 study and 753 from the international dataset. An overall survival (OS) and progression-free survival (PFS) Cox model was derived from the ABC-02 study. White blood cells, haemoglobin, disease status, bilirubin, neutrophils, gender, and performance status were considered prognostic for survival (all with P < 0.10). Patients with metastatic disease {hazard ratio (HR) 1.56 [95% confidence interval (CI) 1.20-2.02]} and Eastern Cooperative Oncology Group performance status (ECOG PS) 2 had worse survival [HR 2.24 (95% CI 1.53-3.28)]. In a dataset restricted to patients who received cisplatin and gemcitabine with ECOG PS 0 and 1, only haemoglobin, disease status, bilirubin, and neutrophils were associated with PFS and OS. ROC analysis suggested the models generated from the ABC-02 study had a limited prognostic value [6-month PFS: area under the curve (AUC) 62% (95% CI 57-68); 1-year OS: AUC 64% (95% CI 58-69)]. CONCLUSION: These data propose a set of prognostic criteria for outcome in advanced biliary tract cancer derived from the ABC-02 study that are validated in an international dataset. Although these findings establish the benchmark for the prognostic evaluation of patients with ABC and confirm the value of longheld clinical observations, the ability of the model to correctly predict prognosis is limited and needs to be improved through identification of additional clinical and molecular markers.
Resumo:
Abstract Objective: The present study was aimed at describing a single-institution experience in the curative treatment of patients diagnosed with locally advanced hypopharyngeal squamous cell carcinoma. Materials and Methods: Data concerning all patients treated for locally advanced hypopharyngeal squamous cell carcinoma between January 2006 and June 2012 were reviewed. Results: A total of 144 patients were included in the present study. The median follow-up period was 36.6 months. Median survival was 26 months, and 2-year and 5-year overall survival rates were, 51% and 30.5%, respectively. Median recurrence-free survival was 18 months and 2-year and 5-year recurrence-free survival rates were 42.8% and 28.5%, respectively. Conclusion: The outcomes in the present series are in line with the literature.
Resumo:
PURPOSE: Advanced Practice Lung Cancer Nurses (APLCN) are well-established in several countries but their role has yet to be established in Switzerland. Developing an innovative nursing role requires a structured approach to guide successful implementation and to meet the overarching goal of improved nursing sensitive patient outcomes. The "Participatory, Evidence-based, Patient-focused process, for guiding the development, implementation, and evaluation of advanced practice nursing" (PEPPA framework) is one approach that was developed in the context of the Canadian health system. The purpose of this article is to describe the development of an APLCN model at a Swiss Academic Medical Center as part of a specialized Thoracic Cancer Center and to evaluate the applicability of PEPPA framework in this process. METHOD: In order to develop and implement the APLCN role, we applied the first seven phases of the PEPPA framework. RESULTS: This article spreads the applicability of the PEPPA framework for an APLCN development. This framework allowed us to i) identify key components of an APLCN model responsive to lung cancer patients' health needs, ii) identify role facilitators and barriers, iii) implement the APLCN role and iv) design a feasibility study of this new role. CONCLUSIONS: The PEPPA framework provides a structured process for implementing novel Advanced Practice Nursing roles in a local context, particularly where such roles are in their infancy. Two key points in the process include assessing patients' health needs and involving key stakeholders.
Resumo:
Seaports play an important part in the wellbeing of a nation. Many nations are highly dependent on foreign trade and most trade is done using sea vessels. This study is part of a larger research project, where a simulation model is required in order to create further analyses on Finnish macro logistical networks. The objective of this study is to create a system dynamic simulation model, which gives an accurate forecast for the development of demand of Finnish seaports up to 2030. The emphasis on this study is to show how it is possible to create a detailed harbor demand System Dynamic model with the help of statistical methods. The used forecasting methods were ARIMA (autoregressive integrated moving average) and regression models. The created simulation model gives a forecast with confidence intervals and allows studying different scenarios. The building process was found to be a useful one and the built model can be expanded to be more detailed. Required capacity for other parts of the Finnish logistical system could easily be included in the model.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
Resumo:
A continuum damage model for the prediction of damage onset and structural collapse of structures manufactured in fiber-reinforced plastic laminates is proposed. The principal damage mechanisms occurring in the longitudinal and transverse directions of a ply are represented by a damage tensor that is fixed in space. Crack closure under load reversal effects are taken into account using damage variables established as a function of the sign of the components of the stress tensor. Damage activation functions based on the LaRC04 failure criteria are used to predict the different damage mechanisms occurring at the ply level. The constitutive damage model is implemented in a finite element code. The objectivity of the numerical model is assured by regularizing the dissipated energy at a material point using Bazant’s Crack Band Model. To verify the accuracy of the approach, analyses ofcoupon specimens were performed, and the numerical predictions were compared with experimental data
Resumo:
The proposal to work on this final project came after several discussions held with Dr. Elzbieta Malinowski Gadja, who in 2008 published the book entitled Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications (Data-Centric Systems and Applications). The project was carried out under the technical supervision of Dr. Malinowski and the direct beneficiary was the University of Costa Rica (UCR) where Dr. Malinowski is a professor at the Department of Computer Science and Informatics. The purpose of this project was twofold: First, to translate chapter III of said book with the intention of generating educational material for the use of the UCR and, second, to venture in the field of technical translation related to data warehouse. For the first component, the goal was to generate a final product that would eventually serve as an educational tool for the post-graduate courses of the UCR. For the second component, this project allowed me to acquire new skills and put into practice techniques that have helped me not only to perfom better in my current job as an Assistant Translator of the Inter-American BAnk (IDB), but also to use them in similar projects. The process was lenggthy and required torough research and constant communication with the author. The investigation focused on the search of terms and definitions to prepare the glossary, which was the basis to start the translation project. The translation process itself was carried out by phases, so that comments and corrections by the author could be taken into account in subsequent stages. Later, based on the glossary and the translated text, illustrations had been created in the Visio software were translated. In addition to the technical revision by the author, professor Carme Mangiron was in charge of revising the non-technical text. The result was a high-quality document that is currently used as reference and study material by the Department of Computer Science and Informatics of Costa Rica.
Resumo:
Recent years have produced great advances in the instrumentation technology. The amount of available data has been increasing due to the simplicity, speed and accuracy of current spectroscopic instruments. Most of these data are, however, meaningless without a proper analysis. This has been one of the reasons for the overgrowing success of multivariate handling of such data. Industrial data is commonly not designed data; in other words, there is no exact experimental design, but rather the data have been collected as a routine procedure during an industrial process. This makes certain demands on the multivariate modeling, as the selection of samples and variables can have an enormous effect. Common approaches in the modeling of industrial data are PCA (principal component analysis) and PLS (projection to latent structures or partial least squares) but there are also other methods that should be considered. The more advanced methods include multi block modeling and nonlinear modeling. In this thesis it is shown that the results of data analysis vary according to the modeling approach used, thus making the selection of the modeling approach dependent on the purpose of the model. If the model is intended to provide accurate predictions, the approach should be different than in the case where the purpose of modeling is mostly to obtain information about the variables and the process. For industrial applicability it is essential that the methods are robust and sufficiently simple to apply. In this way the methods and the results can be compared and an approach selected that is suitable for the intended purpose. Differences in data analysis methods are compared with data from different fields of industry in this thesis. In the first two papers, the multi block method is considered for data originating from the oil and fertilizer industries. The results are compared to those from PLS and priority PLS. The third paper considers applicability of multivariate models to process control for a reactive crystallization process. In the fourth paper, nonlinear modeling is examined with a data set from the oil industry. The response has a nonlinear relation to the descriptor matrix, and the results are compared between linear modeling, polynomial PLS and nonlinear modeling using nonlinear score vectors.
Resumo:
Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.
Resumo:
Rapid depletion of easy-to-access fossil fuel, predominantly, oil and gas resources has now necessitated increase in need to develop new oil and gas sources in ever more remote and hostile environments. This is necessary in order to explore more oil and gas resources to meet rapidly rising long-term energy demand in the world, both at present and in the nearest future. Arctic is one of these harsh environments, where enormous oil and gas resources are available, containing about 20% of the world total oil and gas, but the environmental conditions are very harsh and hostile. However, virtually all the facilities required for the exploration and development of this new energy source are constructed with metals as well as their alloys and are predominantly joined together by welding processes and technologies. Meanwhile, due to entirely different environment from the usual moderate temperate region, conventional welding technologies, common metals and their alloys cannot be applied as this Arctic environment demand metals structures with very high toughness and strength properties under extremely low temperature. This is due to the fact that metals transit from ductility to brittleness as the temperature moves toward extreme negative values. Hence, this research work investigates and presents the advanced welding technologies applicable to Arctic metal structures which can give satisfactory weldments under active Arctic service conditions. .
Resumo:
Objective: To analyze the late results of advanced Chagasic megaesophagus treatment by esophagectomy associated with the use of proton pump inhibitor (omeprazole) as for the incidence of esophagitis and Barrett's esophagus in the remaining stump. Methods : We studied patients with advanced megaesophagus undergoing esophagectomy and transmediastinal esophagogastroplasty. Patients were divided into three groups: A (20) with esophageal replacement by full stomach, without the use of omeprazole; B (20) with esophageal replacement by full stomach, with omeprazole 40 mg/day introduced after the first postoperative endoscopy and maintained for six years; and C (30) with esophageal replacement by gastric tube with use of omeprazole. Dysphagia, weight loss and BMI were clinical parameters we analyzed. Upper gastrointestinal endoscopy was performed in all patients, and determined the height of the anastomosis, the aspect of the mucosa, with special attention to possible injuries arising from gastroesophageal reflux, and the patency of the esophagogastric anastomosis. Results : We studied 50 patients, 28 males (56%) and 22 (44%) females. All underwent endoscopy every year. In the first endoscopy, erosive esophagitis was present in nine patients (18%) and Barrett's esophagus, in four (8%); in the last endoscopy, erosive esophagitis was present in five patients (8%) and Barrett's esophagus in one (2%). When comparing groups B and C, there was no evidence that the manufacturing of a gastric tube reduced esophagitis and Barrett's esophagus. However, when comparing groups A and C, omeprazole use was correlated with reduction of reflux complications such as esophagitis and Barrett's esophagus (p <0.005). Conclusion : The use of omeprazole (40 mg/day) reduced the onset of erosive esophagitis and Barrett's esophagus during the late postoperative period.
Resumo:
The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics machined by a surface grinding process using diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The ground surface was evaluated using Scanning Electron Microscopy (SEM). As a result it can be said that the mechanism of material removal in the grinding of ceramic is largely one of brittle fracture. The increase of the h max can reduce the tangential force required by the process. Although, it results in an increase in the surface damage, reducing the mechanical properties of the ground component.