989 resultados para Adeonellopsis spp., d13C
(Table 1) Stable carbon and oxygen isotopes of planktonic and benthic foraminifera in ODP Hole 1006A
Resumo:
During ODP Leg 166, the recovery of cores from a transect of drill sites across the Bahamas margin from marginal to deep basin environments was an essential requirement for the study of the response of the sedimentary systems to sea-level changes. A detailed biostratigraphy based on planktonic foraminifera was performed on ODP Hole 1006A for an accurate stratigraphic control. The investigated late middle Miocene-early Pliocene sequence spans the interval from about 12.5 Ma (Biozone N12) to approximately 4.5 Ma (Biozone N19). Several bioevents calibrated with the time scale of Berggren et al. (1995a,b) were identified. The ODP Site 1006 benthic oxygen isotope stratigraphy can be correlated to the corresponding deep-water benthic oxygen isotope curve from ODP Site 846 in the Eastern Equatorial Pacific (Shackleton et al., 1995. Proc. ODP Sci. Res. 138, 337-356), which was orbitally tuned for the entire Pliocene into the latest Miocene at 6.0 Ma. The approximate stratigraphic match of the isotopic signals from both records between 4.5 and 6.0 Ma implies that the paleoceanographic signal from the Bahamas is not simply a record of regional variations but, indeed, represents glacio-eustatic fluctuations. The ODP Site 1006 oxygen and carbon isotope record, based on benthic and planktonic foraminifera, was used to define paleoceanographic changes on the margin, which could be tied to lithostratigraphic events on the Bahamas carbonate platform using seismic sequence stratigraphy. The oxygen isotope values show a general cooling trend from the middle to late Miocene, which was interrupted by a significant trend towards warmer sea-surface temperatures (SST) and associated sea-level rise with decreased ice volume during the latest Miocene. This trend reached a maximum coincident with the Miocene/Pliocene boundary. An abrupt cooling in the early Pliocene then followed the warming which continued into the earliest Pliocene. The late Miocene paleoceanographic evolution along the Bahamas margin can be observed in the ODP Site 1006 delta13C values, which support other evidence for the beginning of the closure of the Panama gateway at 8 Ma followed by a reduced intermediate water supply of water from the Pacific into the Caribbean at about 5 Ma. A general correlation of lower sedimentation rates with the major seismic sequence boundaries (SSBs) was observed. Additionally, the SSBs are associated with transitions towards more positive oxygen isotope excursions. This observed correspondence implies that the presence of a SSB, representing a density impedance contrast in the sedimentary sequence, may reflect changes in the character of the deposited sediment during highstands versus those during lowstands. However, not all of the recorded oxygen isotope excursions correspond to SSBs. The absence of a SSB in association with an oxygen isotope excursion indicates that not all oxygen isotope sea-level events impact the carbonate margin to the same extent, or maybe even represent equivalent sea-level fluctuations. Thus, it can be tentatively concluded that SSBs produced on carbonate margins do record sea-level fluctuations but not every sea-level fluctuation is represented by a SSB in the sequence stratigraphic record.
Resumo:
'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago) (Zachos et al., 2005, doi:10.1126/science.1109004; 2008, doi:10.1038/nature06588; Roehl et al., 2007, doi:10.1029/2007GC001784; Thomas et al., 2000; Cramer et al., 2003, doi:10.1029/2003PA000909; Lourens et al., 2005, doi:10.1038/nature03814; Petrizzo, 2005, doi:10.2973/odp.proc.sr.198.102.2005; Sexton et al., 2006, doi:10.1029/2005PA001253; Westerhold et al., 2007, doi:10.1029/2006PA001322; Edgar et al., 2007, doi:10.1038/nature06053; Nicolo et al., 2007, doi:10.1130/G23648A.1; Quillévéré et al., 2008, doi:10.1016/j.epsl.2007.10.040; Stap et al., 2010, doi:10.1130/G30777.1). The most extreme hyperthermal was the 170 thousand year (kyr) interval (Roehl et al., 2007) of 5-7 °C global warming (Zachos et al., 2008) during the Palaeocene-Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs (Zachos et al., 2005; 2008; Lourenbs et al., 2005; Nicolo et al., 2007; Dickens et al., 1995, doi:10.1029/95PA02087; Dickens, 2000; 2003, doi:10.1016/S0012-821X(03)00325-X; Panchuk et al., 2008, doi:10.1130/G24474A.1) and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003). Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was resequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM (Zachos et al., 2005; 2003). Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003) but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.
Resumo:
author please provide abstract