989 resultados para Adaptive Image Binarization
Resumo:
Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.
Resumo:
In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Adventure! The Paladin Order foi um projecto ambicioso que começou por ser desenvolvido como um video jogo completo. Tinha como objéctivo implementar uma ferramenta diferente que permitisse tornar o jogo completamente adaptativo às decisões do jogador tanto nas interacções e no diálogo com outras personagens, assim como no combate contra os variados inímigos do jogo. Devido à inexperiência do autor uma grande parte do tempo foi passado a estudar e a pesquisar várias possíveis soluções que permitissem criar um ambiente que fosse adaptativo de uma forma simples e interessante, não só para os programadores mas também para qualquer pessoa que fosse responsável por editar o diálogo e a história do jogo. Os resultados foram bastante interessantes, revelando um sistema que depende simultaneamente dos ficheiros de onde é retirado o diálogo, e de um sistema de personalidades que permite definir qual será o comportamento de qualquer objecto do jogo ou, pelo menos, como as outras personagens irão reagir. O produto final é uma ferramenta de bases sólidas que permite uma implementação relativamente simples de um sistema abrangente e adaptativo, com poucas falhas e apenas algumas questões de simplicidade de código.
Resumo:
O ensino à distância cresceu consideravelmente nos últimos anos e a tendência é para que continue a crescer em anos vindouros. No entanto, enquanto que a maioria das plataformas de ensino à distância utilizam a mesma abordagem de ensino para todos os utilizadores, os estudantes que as usam são na realidade pessoas de diferentes culturas, locais, idades e géneros, e que possuem diferentes níveis de educação. Ao contrário do ensino à distância tradicional, os sistemas de hipermédia adaptativa educacional adaptam interface, apresentação de conteúdos e navegação, entre outros, às características, necessidades e interesses específicos de diferentes utilizadores. Apesar da investigação na área de sistemas de hipermédia adaptativa já estar bastante desenvolvida, é necessário efetuar mais desenvolvimento e experimentação de modo a determinar quais são os aspetos mais eficazes destes sistemas e avaliar o seu sucesso. A Plataforma de Aprendizagem Colaborativa da Matemática (PCMAT) é um sistema de hipermédia adaptativa educacional com uma abordagem construtivista, que foi desenvolvido com o objetivo de contribuir para a investigação na área de sistemas de hipermédia adaptativa. A plataforma avalia o conhecimento do utilizador e apresenta conteúdos e atividades adaptadas às características e estilo de aprendizagem dominante de estudantes de matemática do segundo ciclo. O desenvolvimento do PCMAT tem também o propósito de auxiliar os alunos Portugueses com a aprendizagem da matemática. De acordo com o estudo PISA 2012 da OCDE [OECD, 2014], o desempenho dos alunos Portugueses na área da matemática melhorou em relação à edição anterior do estudo, mas os resultados obtidos permanecem abaixo da média da OCDE. Por este motivo, uma das finalidades deste projeto é desenvolver um sistema de hipermédia adaptativa que, ao adequar o ensino da matemática às necessidades específicas de cada aluno, os assista com a aquisição de conhecimento. A adaptação é efetuada pelo sistema usando a informação constante no modelo do utilizador para definir um grafo de conceitos do domínio específico. Este grafo é adaptado do modelo do domínio e utilizado para dar resposta às necessidades particulares de cada aluno. Embora a trajetória inicial seja definida pelo professor, o percurso percorrido no grafo por cada aluno é determinado pela sua interação com o sistema, usando para o efeito a representação do conhecimento do aluno e outras características disponíveis no modelo do utilizador, assim como avaliação progressiva. A adaptação é conseguida através de alterações na apresentação de conteúdos e na estrutura e anotações das hiperligações. A apresentação de conteúdos é alterada mostrando ou ocultando cada um dos vários fragmentos que compõe as páginas dum curso. Estes fragmentos são compostos por diferentes objetos de aprendizagem, tais como exercícios, figuras, diagramas, etc. As mudanças efetuadas na estrutura e anotações das hiperligações têm o objetivo de guiar o estudante, apontando-o na direção do conhecimento mais relevante e mantendo-o afastado de informação inadequada. A escolha de objectos de aprendizagem adequados às características particulares de cada aluno é um aspecto essencial do modelo de adaptação do PCMAT. A plataforma inclui para esse propósito um módulo responsável pela recomendação de objectos de aprendizagem, e um módulo para a pesquisa e recuperação dos mesmos. O módulo de recomendação utiliza lógica Fuzzy para converter determinados atributos do aluno num conjunto de parâmetros que caracterizam o objecto de aprendizagem que idealmente deveria ser apresentado ao aluno. Uma vez que o objecto “ideal” poderá não existir no repositório de objectos de aprendizagem do sistema, esses parâmetros são utilizados pelo módulo de pesquisa e recuperação para procurar e devolver ao módulo de recomendação uma lista com os objectos que mais se assemelham ao objecto “ideal”. A pesquisa é feita numa árvore k-d usando o algoritmo k-vizinhos mais próximos. O modelo de recomendação utiliza a lista devolvida pelo módulo de pesquisa e recuperação para seleccionar o objecto de aprendizagem mais apropriado para o aluno e processa-o para inclusão numa das páginas Web do curso. O presente documento descreve o trabalho desenvolvido no âmbito do projeto PCMAT (PTDS/CED/108339/2008), dando relevância à adaptação de conteúdos.
Resumo:
Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype-associated glycan, sialyl-Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1-inducing cytokines IL-12 and TNF-α. In vitro, human DCs co-incubated with STn+ bladder cancer cells, had an immature phenotype (MHC-IIlow, CD80low and CD86low) and were unresponsive to further maturation stimuli. When contacting with STn+ cancer cells, DCs expressed significantly less IL-12 and TNF-α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn+ cancer cells were not activated and showed a FoxP3high IFN-γlow phenotype. Blockade of STn antigens and of STn+ glycoprotein, CD44 and MUC1, in STn+ cancer cells was able to lower the induction of tolerance and DCs become more mature. Overall, our data suggest that STn-expressing cancer cells impair DC maturation and endow DCs with a tolerogenic function, limiting their capacity to trigger protective anti-tumour T cell responses. STn antigens and, in particular, STn+ glycoproteins are potential targets for circumventing tumour-induced tolerogenic mechanisms.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
This paper incorporates egocentric comparisons into a human capital accumulation model and studies the evolution of positive self image over time. The paper shows that the process of human capital accumulation together with egocentric comparisons imply that positive self image of a cohort is first increasing and then decreasing over time. Additionally, the paper finds that positive self image: (1) peaks earlier in activities where skill depreciation is higher, (2) is smaller in activities where the distribution of income is more dispersed, (3) is not a stable characteristic of an individual, and (4) is higher for more patient individuals.