903 resultados para Acetyl coenzyme A carboxylase
Resumo:
Objective: To describe the findings of proton magnetic resonance spectroscopy (H-1-MRS) in Alzheimer`s disease (AD) and cognitive impairment, no dementia (CIND) elderly from a community-based sample. Methods: Thirteen patients with AD, 12 with CIND and 15 normal individuals were evaluated. The H-1-MRS was performed in the right temporal, left parietal and medial occipital regions studying the metabolites N-acetylaspartate (NAA), creatine (Cr), choline (Cho) and myoinositol (ml). The clinical diagnosis was based on standardized cognitive tests - MMSE and CAMDEX - and the results correlated with the H-1-MRS. Results: Parietal Cho was higher in control individuals and lower in CIND subjects. AD and control groups were better identified by temporal and parietal ml combined with the temporal NAA/Cr ratio. CIND was better identified by parietal Cho. Conclusion: The H-1-MRS findings confirmed the hypothesis that metabolic alterations are present since the first symptoms of cognitively impaired elderly subjects. These results suggest that combining MRS from different cerebral regions can help in the diagnosis and follow-up of community elderly individuals with memory complaints and AD. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system. (Hypertension. 2011;57:965-972.) . Online Data Supplement
Resumo:
We compared the lignin contents of tropical forages by different analytical methods and evaluated their correlations with parameters related to the degradation of neutral detergent fiber (NDF). The lignin content was evaluated by five methods: cellulose solubilization in sulfuric acid [Lignin (sa)], oxidation with potassium permanganate [Lignin (pm)], the Klason lignin method (KL), solubilization in acetyl bromide from acid detergent fiber (ABLadf) and solubilization in acetyl bromide from the cell wall (ABLcw). Samples from ten grasses and ten legumes were used. The lignin content values obtained by gravimetric methods were also corrected for protein contamination, and the corrected values were referred to as Lignin (sa)p, Lignin (pm)p and KLp. The indigestible fraction of NDF (iNDF), the discrete lag (LAG) and the fractional rate of degradation (kd) of NDF were estimated using an in vitro assay. Correcting for protein resulted in reductions (P < 0.05) in the lignin contents as measured by the Lignin (sa), Lignin (pm) and, especially, the KL methods. There was an interaction (P < 0.05) of analytical method and forage group for lignin content. In general, LKp method provided the higher (P < 0.05) lignin contents. The estimates of lignin content obtained by the Lignin (sa)p, Lignin (pm)p and LKp methods were associated (P > 0.05) with all of the NDF degradation parameters. However, the strongest correlation coefficients for all methods evaluated were obtained with Lignin (pm)p and KLp. The lignin content estimated by the ABLcw method did not correlate (P > 0.05) with any parameters of NDF degradation. There was a correlation (P < 0.05) between the lignin content estimated by the ABLadf method and iNDF content. Nonetheless, this correlation was weaker than those found with gravimetric methods. From these results, we concluded that the gravimetric methods produce residues that are contaminated by nitrogenous compounds. Adjustment for these contaminants is suggested, particularly for the KL method, to express lignin content with greater accuracy. The relationships between lignin content measurements and NDF degradation parameters can be better determined using KLp and Lignin (pm)p methods. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Strong evidence obtained from in vivo and ex-vivo studies suggests the existence of interaction between dopaminergic and nitrergic systems. Some of the observations suggest a possible implication of nitric oxide (NO) in dopamine (DA) uptake mechanism. The present work investigated the interaction between both systems by examining the effect of an NO donor, sodium nitroprusside (SNP), associated with the indirect DA agonist, amphetamine (AMPH) on tritiated DA uptake in cultures of embryonic mesencephalic neurons. Consistent with the literature, both AMPH (1, 3 and 10 mu M) and SNP (300 mu M and 1 mM) inhibited DA uptake in a dose-dependent manner. In addition, the inhibition of DA uptake by AMPH (1 and 3 mu M) was significantly increased by the previous addition of SNP (300 mu M). The implication of NO in this interaction was supported by the fact that the free radical scavenger N-acetyl-L-Cysteine (500 mu M) significantly increased DA uptake and completely abolished the effect of SNP, leaving unaffected that from AMPH on DA uptake. Further, double-labeling immunohistochemistry showed the presence of tyrosine hydroxylase-(TH, marker for dopaminergic neurons) and neuronal NO synthase- (nNOS, marker for NO containing neurons) expressing neurons in mesencephalic cultures. Some dopaminergic neurons also express nNOS giving further support for a pre-synaptic interaction between both systems. This is the first work demonstrating in mesencephalic cultured neurons a combined effect of an NO donor and an indirect DA agonist on specific DA uptake. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Transgenic plants of the model legume Lotus japonicus were regenerated by hypocotyl transformation using a bar gene as a selectable marker. The bar encodes for Phosphinothricin Acetyl Transferase that detoxifies phosphinothricin (PPT), the active ingredient of herbicides such as Ignite (AgrEvo) and Basta (Hoechst). Transgenic L. japonicus plants resistant to PPT were positive upon PCR by bar gene-specific primers. In 5 out of 7 independent lines tested, PPT resistance segregated as a single dominant allele indicating a single T-DNA insertion into the plant genome. All regenerated plants were fertile and void of visible somaclonal abnormalities contrary to 14% infertility when antibiotic selectable markers were used. The lack of somaclonal variation, ease of PPT application and low cost of PPT makes this protocol an attractive alternative for the regeneration of transgenic L. japonicus. The production of PPT herbicide-resistant L. japonicus plants may have significant commercial applications in crop production.
Resumo:
Regulation of the expression of dimethylsulfoxide (DMSO) reductase was investigated in the purple phototrophic bacterium Rhodobacter capsulatus. Under phototrophic, anaerobic conditions with malate as carbon source, DMSO caused an approximately 150-fold induction of DMSO reductase activity. The response regulator DorR was required for DMSO-dependent induction and also appeared to slightly repress DMSO reductase expression in the absence of substrate. Likewise, when pyruvate replaced malate as carbon source there was an induction of DMSO reductase activity in cells grown at low light intensity (16 W m(-2)) and again this induction was dependent on DorR. The level of DMSO reductase activity in aerobically grown cells was elevated when pyruvate replaced malate as carbon source. One possible explanation for this is that acetyl phosphate, produced from pyruvate, may activate expression of DMSO reductase by direct phosphorylation of DorR, leading to low levels of induction of dor gene expression in the absence of DMSO. A mutant lacking the global response regulator of photosynthesis gene expression, RegA, exhibited high levels of DMSO reductase in the absence of DMSO, when grown phototrophically with malate as carbon source. This suggests that phosphorylated RegA acts as a repressor of dor operon expression under these conditions. It has been proposed elsewhere that RegA-dependent expression is negatively regulated by the cytochrome cbb(3) oxidase. A cco mutant lacking cytochrome cbb(3) exhibited significantly higher levels of Phi[dorA::lacZ] activity in the presence of DMSO compared to wild-type cells and this is consistent with the above model. Pyruvate restored DMSO reductase expression in the regA mutant to the same pattern as found in wild-type cells. These data suggest that R. capsulatus contains a regulator of DMSO respiration that is distinct from DorR and RegA, is activated in the presence of pyruvate, and acts as a negative regulator of DMSO reductase expression.
Resumo:
Dinoflagellates exist in symbiosis with a number of marine invertebrates including giant clams, which are the largest of these symbiotic organisms. The dinoflagellates (Symbiodinium sp.) live intercellularly within tubules in the mantle of the host clam. The transport of inorganic carbon (Ci) from seawater to Symbiodinium (=zooxanthellae) is an essential function of hosts that derive the majority of their respiratory energy from the photosynthate exported by the zooxanthellae. Immunolocalisation studies show that the host has adapted its physiology to acquire, rather than remove CO2, from the haemolymph and clam tissues. Two carbonic anhydrase (CA) isoforms (32 and 70 kDa) play an essential part in this process. These have been localised to the mantle and gill tissues where they catalyse the interconversion of HCO3- to CO2, which then diffuses into the host tissues. The zooxanthellae exhibit a number of strategies to maximise Ci acquisition and utilisation. This is necessary as they express a form II Rubisco that has poor discrimination between CO2 and O-2. Evidence is presented for a carbon concentrating mechanism (CCM) to overcome. this disadvantage. The CCM incorporates the presence of a light-activated CA activity, a capacity to take up both HCO3- and CO2, an ability to accumulate an elevated concentration of Ci within the algal cell, and localisation of Rubisco to the pyrenoid. These algae also express both external and intracellular CAs, with the intracellular isoforms being localised to the thylakoid lumen and pyrenoid. These results have been incorporated into a model that explains the transport of Ci from seawater through the clam to the zooxanthellae.
Resumo:
Passive avoidance learning is with advantage studied in day-old chicks trained to distinguish between beads of two different colors, of which one at training was associated with aversive taste. During the first 30-min post-training, two periods of glutamate release occur in the forebrain. One period is immediately after the aversive experience, when glutamate release is confined to the left hemisphere. A second release, 30 min later, may be bilateral, perhaps with preponderance of the right hemisphere. The present study showed increased pool sizes of glutamate and glutamine, specifically in the left hemisphere, at the time when the first glutamate release occurs, indicating de novo synthesis of glutamate/glutamine from glucose or glycogen, which are the only possible substrates. Behavioral evidence that memory is extinguished by intracranial administration at this time of iodoacetate, an inhibitor of glycolysis and glycogenolysis, and that the extinction of memory is counteracted by injection of glutamine, supports this concept. A decrease in forebrain glycogen of similar magnitude and coinciding with the increase in glutamate and glutamine suggests that glycogen rather than glucose is the main source of newly synthesized glutamate/glutamine. The second activation of glutamatergic activity 30 min after training, when memory is consolidated into stable, long-term memory, is associated with a bilateral increase in pool size of glutamate/glutamine. No glycogenolysis was observed at this time, but again there is a temporal correlation with sensitivity to inhibition by iodoacetate and rescue by glutamine, indicating the importance of de novo synthesis of glutamate/glutamine from glucose or glycogen. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Glycogen-accumulating organisms (GAO) have the potential to directly compete with polyphosphate-accumulating organisms (PAO) in EBPR systems as both are able to take up VFA anaerobically and grow on the intracellular storage products aerobically. Under anaerobic conditions GAO hydrolyse glycogen to gain energy and reducing equivalents to take up VFA and to synthesise polyhydroxyalkanoate (PHA). In the subsequent aerobic stage, PHA is being oxidised to gain energy for glycogen replenishment (from PHA) and for cell growth. This article describes a complete anaerobic and aerobic model for GAO based on the understanding of their metabolic pathways. The anaerobic model has been developed and reported previously, while the aerobic metabolic model was developed in this study. It is based on the assumption that acetyl-CoA and propionyl-CoA go through the catabolic and anabolic processes independently. Experimental validation shows that the integrated model can predict the anaerobic and aerobic results very well. It was found in this study that at pH 7 the maximum acetate uptake rate of GAO was slower than that reported for PAO in the anaerobic stage. On the other hand, the net biomass production per C-mol acetate added is about 9% higher for GAO than for PAO. This would indicate that PAO and GAO each have certain competitive advantages during different parts of the anaerobic/aerobic process cycle. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Novel (E)-3-aryl-4-benzylidene-8-hydroxy-3,4-dihydro-1 H-xanthene-1,9(2H)-diones are prepared by the cyclization of (E,E)-3-cinnamoyl-5-hydroxy-2-styrylchromones efficiently catalyzed with boron tribromide. The (E,E)-3-cinnamoyl-5-hydroxy-2-styrylchromones are obtained from the Baker–Venkataraman rearrangement of (E,E)-2-acetyl-1,3-phenylene bis(3-phenylacrylate), which is greatly improved under microwave irradiation.
Resumo:
We report within this paper the development of a fiber-optic based sensor for Hg(II) ions. Fluorescent carbon nanoparticles were synthesized by laser ablation and functionalized with PEG200 and N-acetyl-l-cysteine so they can be anionic in nature. This characteristic facilitated their deposition by the layer-by-layer assembly method into thin alternating films along with a cationic polyelectrolyte, poly(ethyleneimine). Such films could be immobilized onto the tip of a glass optical fiber, allowing the construction of an optical fluorescence sensor. When immobilized on the fiber-optic tip, the resultant sensor was capable of selectively detecting sub-micromolar concentrations of Hg(II) with an increased sensitivity compared to carbon dot solutions. The fluorescence of the carbon dots was quenched by up to 44% by Hg(II) ions and interference from other metal ions was minimal.
Resumo:
The oxidative behavior of heroin in aqueous solution is reported. In order to identify its oxidation peaks, several metabolites, 6-monoacetylmorphine, 3-monoacetylmorphine and norheroin, were synthesized and their electrochemical behavior studied using differential pulse voltammetry. The anodic waves observed for heroin correspond to the oxidation of the tertiary amine group and its follow-up product (secondary amine), and to the oxidation of the phenolic group obtained from hydrolysis, at alkaline pHs, of the 3-acetyl group. The results enabled a new oxidative mechanism for heroin to be proposed in which a secondary amine, norheroin, and an aldehyde are obtained. The voltammetric behavior of 6-monoacetylmorphine and morphine was found to be similar demonstrating that the presence of an acetyl substituent on the 6-hydroxy group does not have a relevant influence on the peak potential of the wave resulting from oxidation of the 3-phenolic group.
Resumo:
An optical fiber sensor for Hg(II) in aqueous solution based on sol–gel immobilized carbon dots nanoparticles functionalized with PEG200 and N-acetyl-l-cysteine is described. This sol–gel method generated a thin (about 750 nm), homogenous and smooth (roughness of 2.7±0.7 a˚ ) filmthat immobilizes the carbon dots and allows reversible sensing of Hg(II) in aqueous solution. A fast (less than 10 s), reversible and stable (the fluorescence intensity measurements oscillate less than 1% after several calibration cycles) sensor system was obtained. The sensor allow the detection of submicron molar concentrations of Hg(II) in aqueous solution. The fluorescence intensity of the immobilized carbon dots is quenched by the presence of Hg(II) with a Stern-Volmer constant (pH = 6.8) of 5.3×105M−1.
Resumo:
In the last years, new techniques of neuroimages and histopathological methods have been added to the management of cerebral mass lesions in patients with AIDS. Stereotactic biopsy is necessary when after 14 days of empirical treatment for Toxoplasma gondii encephalitis there is no clinical or neuroradiologic improvement. We report a woman with AIDS who developed a single focal brain lesion on the right frontal lobe. She presented a long history of headache and seizures. After two weeks of empirical treatment for toxoplasma encephalitis without response, a magnetic resonance image with spectroscopy was performed and showed a tumoral pattern with a choline peak, diminished of N-acetyl-aspartate and presence of lactate. A stereotactic biopsy was performed. Histopathological diagnosis was a diffuse oligodendroglioma type A. A microsurgical resection of the tumor was carried out and antiretroviral treatment was started. To date she is in good clinical condition, with undetectable plasma viral load and CD4 T cell count > 200 cell/uL.
Resumo:
Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15–5.41 μg/kg fw), mature tomatoes (10.52–10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.