739 resultados para Acetyl cholinesterase
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia
Resumo:
Summary: Decrease in glutathione (GSH) levels was observed in cerebrospinal fluid, prefrontal cortex and post-mortem striatum of schizophrenia patients. Evidences suggest a defect in GSH synthesis at the levels of the rate-limiting synthesizing enzyme, glutamate cysteine ligase (GCL). Indeed, polymorphisms in the gene of the modifier subunit of GCL (GCLM) was shown to be associated with the disease in three different populations, GCLM gene expression is decreaséd in fibroblasts from patients and the increase in GCL activity induced by an oxidative stress is lower in patients' fibroblasts compared to controls. GSH being a major antioxydant and redox regulator, its presence is of high importance for protecting cells against oxidative stress. The aim of the present work was to use various substances to increase GSH levels by diverse strategies. Since the synthesizing enzyme GCL is defective, bypassing this enzyme was the first strategy we used. GSH ethyl ester (GSHEE), a membrane permeable analog of GSH, succeeded in replenishing GSH levels in cultured neurons and astrocytes previously depleted in GSH by L-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of GCL. GSHEE also abolished dopamine-induced decrease of NMDA-mediated calcium response observed in BSO-treated neurons. y-Glutamylcysteine ethyl ester (GCSE), a membrane permeable analog of the product of GCL, increased GSH levels only in astrocytes. The second strategy was to boost the defective enzyme GCL. While quercetin (flavonoid) could increase GSH levels only in astrocytes, curcumin (polyphenol) and tertbutylhydroquinone (quinone) were successful in both neurons and astrocytes, via an increase in the gene expression of the two subunits of GCL and, consequently, an increase in the activity of the enzyme. However, FK506, an immunosupressant, was unefficient. Treating astrocytes from GCLM KO mice showed that the modulatory subunit is necessary for the action of the substances. Finally, since cysteine is the limiting precursor in the synthesis of GSH, we hypothesized that we could increase GSH levels by providing more of this precursor. N-acetyl-cysteine (NAC), a cysteine donor, was administered to schizophrenia patients, using adouble-blind and cross-over protocol. NAC significantly improved the mismatch negativity (MMN), a component of the auditory evoked potentials, thought to reflect selective current flowing through open, unblocked NMDA channels. Considering that NMDA function is reduced when GSH levels are low, increasing these levels with NAC could improve NMDA function as reflected by the improvement in the generation of the MMN. Résumé: Les taux de glutathion (GSH) dans le liquide céphalo-rachidien, le cortex préfrontal ainsi que le striatum post-mortem de patients schizophrènes, sont diminués. L'enzyme limitante dans la synthèse du GSH, la glutamyl-cysteine ligase (GCL), est défectueuse. En effet, des polymorphismes dans le gène de la sous-unité modulatrice de GCL (GCLM) sont associés à la maladie, l'expression du gène GCLM est diminuée dans les fibroblastes de patients et, lors d'un stress oxidative, l'augmentation de l'activité de GCL est plus faible chez les patients que chez les contrôles. Le GSH étant un important antioxydant et régulateur du status redox, sa présence est primordiale afin de protéger les cellules contre les stress oxydatifs. Au cours du présent travail, une variété de substances ont été utilisées dans le but d'augmenter les taux de GSH. Passer outre l'enzyme de synthèse GCL qui est défectueuse fut la première stratégie utilisée. L'éthylester de GSH (GSHEE), un analogue du GSH qui pénètre la membrane cellulaire, a augmenté les taux de GSH dans des neurones et des astrocytes déficitaires en GSH dû au L-buthionine-(S,R)-sulfoximine (BSO), un inhibiteur du GCL. Dans ces neurones, le GSHEE a aussi aboli la diminution de la réponse NMDA, induite parla dopamine. L'éthyl-ester de y-glutamylcysteine (GCEE), un analogue du produit de la GCL qui pénètre la membrane cellulaire, a augmenté les taux de GSH seulement dans les astrocytes. La seconde stratégie était d'augmenter l'activité de l'enzyme GCL. Tandis que la quercétine (flavonoïde) n'a pu augmenter les taux de GSH que dans les astrocytes, la curcumin (polyphénol) et le tert-butylhydroquinone (quinone) furent efficaces dans les deux types de cellules, via une augmentation de l'expression des gènes des deux sous-unités de GCL et de l'activité de l'enzyme. Le FK506 (immunosupresseur) n' a démontré aucune efficacité. Traiter des astrocytes provenant de souris GCLM KO a permis d'observer que la sous-unité modulatoire est nécessaire à l'action des substances. Enfin, puisque la cysteine est le substrat limitant dans la synthèse du GSH, fournir plus de ce présurseur pourrait augmenter les taux de GSH. Nacétyl-cystéine (NAC), un donneur de cystéine, a été administrée à des schizophrènes, lors d'une étude en double-aveugle et cross-over. NAC a amélioré le mismatch negativity (MMN), un composant des potentials évoqués auditifs, qui reflète le courant circulant via les canaux NMDA. Puisque la fonctionnalité des R-NMDA est diminuée lorsque les taux de GSH sont bas, augmenter ces taux avec NAC pourrait améliorer la fonction des R-NMDA, réflété par une augmentation de l'amplitude du MMN.
Resumo:
A method for the measurement of carbamoyl-phosphate synthetase I activity in animal tissues has been developed using the livers of rats under normal and hyperproteic diets. The method is based on the incorporation of 14C-ammonium bicarbonate to carbamoyl-phosphate in the presence of ATP-Mg and N-acetyl-glutamate. The reaction is stopped by chilling, lowering the pH and adding ethanol. Excess bicarbonate is flushed out under a gentle stream of cold CO2. The only label remaining in the medium was that incorporated into carbamoyl-phosphate, since all 14C-CO2 from bicarbonate was eliminated. The method is rapid and requires only a low pressure supply of CO2 to remove the excess substrate. The reaction is linear up to 10 min using homogenate dilutions of 1:20 to 1:200 (w/v). Rat liver activity was in the range of 89±8 nkat/g. Hyperproteic diet resulted in a significant 1.4-fold increase. The design of the method allows for the processing of multiple samples at the same time, and incubation medium manipulation is unnecessary, since the plastic incubation vial and its contents are finally counted together.
Resumo:
Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in SLC26A2, a cell membrane sulfate-chloride antiporter. Sulfate uptake impairment results in low cytosolic sulfate, leading to cartilage proteoglycan (PG) undersulfation. In this work, we used the dtd mouse model to study the role of N-acetyl-l-cysteine (NAC), a well-known drug with antioxidant properties, as an intracellular sulfate source for macromolecular sulfation. Because of the important pre-natal phase of skeletal development and growth, we administered 30 g/l NAC in the drinking water to pregnant mice to explore a possible transplacental effect on the fetuses. When cartilage PG sulfation was evaluated by high-performance liquid chromatography disaccharide analysis in dtd newborn mice, a marked increase in PG sulfation was observed in newborns from NAC-treated pregnancies when compared with the placebo group. Morphometric studies of the femur, tibia and ilium after skeletal staining with alcian blue and alizarin red indicated a partial rescue of abnormal bone morphology in dtd newborns from treated females, compared with pups from untreated females. The beneficial effect of increased macromolecular sulfation was confirmed by chondrocyte proliferation studies in cryosections of the tibial epiphysis by proliferating cell nuclear antigen immunohistochemistry: the percentage of proliferating cells, significantly reduced in the placebo group, reached normal values in dtd newborns from NAC-treated females. In conclusion, NAC is a useful source of sulfate for macromolecular sulfation in vivo when extracellular sulfate supply is reduced, confirming the potential of therapeutic approaches with thiol compounds to improve skeletal deformity and short stature in human DTD and related disorders.
Resumo:
To investigate whether caveolin-1 (cav-1) may modulate inducible nitric oxide synthase (iNOS) function in intact cells, the human intestinal carcinoma cell lines HT29 and DLD1 that have low endogenous cav-1 levels were transfected with cav-1 cDNA. In nontransfected cells, iNOS mRNA and protein levels were increased by the addition of a mix of cytokines. Ectopic expression of cav-1 in both cell lines correlated with significantly decreased iNOS activity and protein levels. This effect was linked to a posttranscriptional mechanism involving enhanced iNOS protein degradation by the proteasome pathway, because (i) induction of iNOS mRNA by cytokines was not affected and (ii) iNOS protein levels increased in the presence of the proteasome inhibitors N-acetyl-Leu-Leu-Norleucinal and lactacystin. In addition, a small amount of iNOS was found to cofractionate with cav-1 in Triton X-100-insoluble membrane fractions where also iNOS degradation was apparent. As has been described for endothelial and neuronal NOS isoenzymes, direct binding between cav-1 and human iNOS was detected in vitro. Taken together, these results suggest that cav-1 promotes iNOS presence in detergent-insoluble membrane fractions and degradation there via the proteasome pathway.
Resumo:
Cp'Mn(CO)3 (Cp'=h5-C5H4-CH 3) reacts with P(C6H5)2H in THF to give Cp'(CO)2MnPPh2H (Ph = Phenyl) (1), by substitution of one CO ligand. The reaction of 1 with CH3COCl and CH3S(O)2Cl in the presence of triethylamine occurs under electrophilic substitution on the diphenylphosphan ligand to yield the acetyl- and sulfonylphosphane complexes of manganese(I) Cp'(CO)2MnPPh2COCH3 (2) and Cp'(CO)2MnPPh2S(O)2 CH3 (3). The complex stabilisation of these molecules, wich are hitherto unknown in the free state, is only accomplished by blocking the free electron pair on phosphorus by coordination. The new complexes 1, 2 and 3 were analysed by IR, ¹H-NMR and 31P-MNR spectroscopy and their similar structures are discusssed.
Resumo:
Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. They produce common intracellular products including proteins, amino acids, polyols, carotenoids, polysaccharides and vitamins. The secondary metabolites found in lichens are phenolics which accumulate either on the cortex or on the cell walls of medullary hyphae and they are mainly acetyl-polimalonyl pathway derivatives. Polysaccharides, proteins and secondary metabolites produced by lichens have attracted the attention of investigators due their biological activities. This revision coments about the biosynthetic origin and structures of the principal classes of compounds produced by these organisms.
Resumo:
The first total synthesis of the indole alkaloids ()-aplicyanins A, B and E, plus seventeen analogs, all in racemic form is reported. Modifications to the parent compound included changing the number of bromine substituents on the indole, the groups on the indole nitrogen (H, Me or OMe), and/or the oxidation level of the heterocyclic core tetrahydropyrimidine. Each compound was screened against three human tumor cell lines, and fourteen of the newly synthesized compounds showed considerable cytotoxicity. The assay results were used to establish structure-activity relationships. These results suggest that the acetyl group moiety on the imine nitrogen, and the bromine at position 5 of the indole, are both critical to activity.
Resumo:
The chemical and biological properties of energy-rich phosphate compounds, e.g. ATP and acetyl phosphate, were revised. The role of water in the formation of this class of energy-rich compounds in biological systems is also discussed.
Resumo:
A flow injection spectrophotometric procedure is proposed for the determination of paracetamol (acetaminophen) in pharmaceutical formulations. Powdered and liquid samples were previously dissolved/diluted in 0.05 mol L-1 hydrochloric acid solution and a volume of 250 µL was injected directly into a carrier stream of this same acid solution, flowing at 2.5 mL min-1. Paracetamol reacts with sodium hypochlorite forming N-acetyl-p-benzoquinoneimine which then reacts with sodium salicylate in sodium hydroxide solution yielding a blue indophenol dye which was measured at 640 nm in the pH range of 9.5-10.0. Paracetamol was determined in pharmaceutical products in the 1.0 to 100.0 mg L-1 (3.3x10-6 a 6.6x10-4 mol L-1) concentration range, with a detection limit of 0.5 mg L-1 (1.6x10-6 mol L-1). The recovery of this analyte in five samples ranged from 98.0 to 103.6 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1% for paracetamol concentrations of 25.0, 50.0 and 75.0 mg L-1 (n=10). A paired t-test showed that all results obtained for paracetamol in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
The present review summarizes the most relevant results of our research group obtained recently in the field of unimolecular reaction dynamics. The following processes are specifically analyzed: the isomerization, dissociation and elimination in methyl nitrite, the fragmentation reactions of the mercaptomethyl cation, the C-CO dissociation in the acetyl and propionyl radicals, and the decomposition of vinyl fluoride. In all the cases, only state- or energy-selected systems are considered. Special emphasis is paid to the possibility of systems exhibiting non-statistical behavior.
Resumo:
Crude extracts of several vegetables such as peach (Prunus persica), yam (Alocasia macrorhiza), manioc (Manihot utilissima), artichoke (Cynara scolymus L), sweet potato (Ipomoea batatas (L.) Lam.), turnip (Brassica campestre ssp. rapifera), horseradish (Armoracia rusticana) and zucchini (Cucurbita pepo) were investigated as the source of peroxidase (POD: EC 1.11.1.7). Among those, zucchini (Cucurbita pepo) crude extract was found to be the best one. This enzyme in the presence of hydrogen peroxide catalyses the oxidation of paracetamol to N-acetyl-p-benzoquinoneimine which the electrochemical reduction back to paracetamol was obtained at a peak potential of ¾0.10V. A cyclic voltammetric study was performed by scanning the potential from + 0.5 to ¾ 0.5 V. The recovery of paracetamol from two samples ranged from 97.3 to 106% and a rectilinear calibration curve for paracetamol concentration from 1.2x10-4 to 2.5x10-3 mol L-1 (r=0.9965) were obtained. The detection limit was 6.9x10-5 mol L-1 and the relative standard deviation was less than 1.1% for a solution containing 2.5x10-3 mol L-1 paracetamol and 2.0x10-3 mol L-1 hydrogen peroxide (n=12). The results obtained for paracetamol in pharmaceutical products using the proposed biosensor and Pharmacopoeial procedures are in agreement at the 95% confidence level.
Resumo:
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognite impairment and personality changes. The development of drugs for the treatment of the cognitive deficits of AD has focused on agents which counteract loss in cholinergic activities. These symptons of AD have been successfully treated with acetylcholinesterase (AchE) inhibitors (eg. galanthamine). There still is great interest in finding better AchE inhibitors. We use Ellmann's microplate assay and silica gel thin-layer chromatography (TLC) to screen natural products from plants as new sources of AchE inhibitors.
Resumo:
Alzheimer's disease (AD) is a progressive neurodegenerative pathology with severe economic and social impact. There is currently no cure, although cholinesterase inhibitors provide effective temporary relief of symptoms in some patients. Nowadays drug research and development are based on the cholinergic hypothesis that supports the cognition improvement by regulation of the synthesis and release of acetylcholine in the brain. There are only four commercial medicines approved for treatment of AD and natural products have played an important role in the research for new acetylcholinesterase inhibitors.
Resumo:
Plant extracts are usually complex mixtures which contain several molecules of different sizes with varied functional groups. Such extracts are a challenge to the chemist of natural products. Ion exchange chromatography in non-aqueous medium, used for separation of basic or acidic fractions from plant extracts, is an important unit operation in preparative scale separations. Anionic macroporous resin in non-aqueous medium was used with success in this study for separation of the acid fraction of Copaifera multijuga (Copaiba oil), rich in labdanic diterpenes and for the methanolic extract of Croton cajucara (acetyl aleuritoric acid).