905 resultados para Acetolactate Synthase
Resumo:
Septic shock or sepsis is reported to be one of the major causes of death when followed by systemic infectious trauma in humans and other mammals. Its development leads to a large drop in blood pressure and a reduction in vascular responsiveness to physiological vasoconstrictors which, if not contained, can lead to death. It is proposed that this vascular response is due to the action of bacterial cell wall products released into the bloodstream by the vascular endothelium and is considered a normal response of the body's defenses against infection. A reduction in vascular reactivity to epinephrine and norepinephrine is observed under these conditions. In the present study in rats, the aim was to assess whether those effects of hypotension and hyporeactivity are also related to another endogenous vasoconstrictor, angiotensin II (AII). We evaluated the variation in the power of this vasoconstrictor over the mean arterial pressure in anesthetized rats, before and after the establishment of hypotension by Escherichia coli endotoxin (Etx). Our results show that in this model of septic shock, there is a reduction in vascular reactivity to AII and this reduction can be reversed by the inhibitor of nitric oxide synthase, Nω-Nitro-L- Arginine (NωNLA). Our results also suggest that other endogenous factors (not yet fully known) are involved in the protection of rats against septic shock, in addition to the L-arginine NO pathway.
Resumo:
Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.
Resumo:
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity. © 2013 Galvão et al.
Resumo:
Background: The fungus Paracoccidioides spp is the agent of paracoccidioidomycosis (PCM), a pulmonary mycosis acquired by the inhalation of fungal propagules. Paracoccidioides malate synthase (PbMLS) is important in the infectious process of Paracoccidioides spp because the transcript is up-regulated during the transition from mycelium to yeast and in yeast cells during phagocytosis by murine macrophages. In addition, PbMLS acts as an adhesin in Paracoccidioides spp. The evidence for the multifunctionality of PbMLS indicates that it could interact with other proteins from the fungus and host. The objective of this study was to identify and analyze proteins that possibly bind to PbMLS (PbMLS-interacting proteins) because protein interactions are intrinsic to cell processes, and it might be possible to infer the function of a protein through the identification of its ligands. Results: The search for interactions was performed using an in vivo assay with a two-hybrid library constructed in S. cerevisiae; the transcripts were sequenced and identified. In addition, an in vitro assay using pull-down GST methodology with different protein extracts (yeast, mycelium, yeast-secreted proteins and macrophage) was performed, and the resulting interactions were identified by mass spectrometry (MS). Some of the protein interactions were confirmed by Far-Western blotting using specific antibodies, and the interaction of PbMLS with macrophages was validated by indirect immunofluorescence and confocal microscopy. In silico analysis using molecular modeling, dynamics and docking identified the amino acids that were involved in the interactions between PbMLS and PbMLS-interacting proteins. Finally, the interactions were visualized graphically using Osprey software. Conclusion: These observations indicate that PbMLS interacts with proteins that are in different functional categories, such as cellular transport, protein biosynthesis, modification and degradation of proteins and signal transduction. These data suggest that PbMLS could play different roles in the fungal cell. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.
Resumo:
The visual system is a potential target for methylmercury (MeHg) intoxication. Nevertheless, there are few studies about the cellular mechanisms of toxicity induced by MeHg in retinal cells. Various reports have indicated a critical role for nitric oxide synthase (NOS) activation in modulating MeHg neurotoxicity in cerebellar and cortical regions. The aim of the present study is to describe the effects of MeHg on cell viability and NOS activation in chick retinal cell cultures. For this purpose, primary cultures were prepared from 7-day-old chick embryos: retinas were aseptically dissected and dissociated and cells were grown at 37ºC for 7-8 days. Cultures were exposed to MeHg (10 µM, 100 µM, and 1 mM) for 2, 4, and 6 h. Cell viability was measured by MTT method and NOS activity by monitoring the conversion of L-[H3]-arginine to L-[H3]-citrulline. The incubation of cultured retina cells with 10 and 100 µM MeHg promoted an increase of NOS activity compared to control (P < 0.05). Maximum values (P < 0.05) were reached after 4 h of MeHg incubation: increases of 81.6 ± 5.3 and 91.3 ± 3.7%, respectively (data are reported as mean ± SEM for 4 replicates). MeHg also promoted a concentration- and time-dependent decrease in cell viability, with the highest toxicity (a reduction of about 80% in cell viability) being observed at the concentration of 1 mM and after 4-6 h of incubation. The present study demonstrates for the first time the modulation of MeHg neurotoxicity in retinal cells by the nitrergic system
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Preeclampsia (PE) is characterized by hypertension and proteinuria, occurring after the 20th week of pregnancy in women who have had no previous symptoms. The disease progresses with generalized vasoconstriction and endothelial dysfunction. Clinically, it is important to diagnose the severe form of the disease (sPE), in which blood pressure and proteinuria are much higher. Recently, the gestational age (GA) of the onset of PE has led to the classification of this disease as early (GA <34 weeks) and late (GA >= 34 weeks). Several genetic polymorphisms affecting endothelial nitric oxide synthase (eNOS) levels or function were described, including G894T (Glu298Asp), VNTR b/a (variable-number 27-bp tandem repeat) and T-786C (promoter) polymorphisms. Thus, the aim of this study was to compare the distribution of G894T, VNTR b/a and T-786C polymorphisms and their haplotypes in Brazilian early and late sPE, as well as in normotensive pregnant. A total of 201 women were evaluated, 53 with early sPE, 45 with late sPE and 103 as normotensive pregnant women. The frequency of 894T allele was higher in late sPE vs normotensive pregnant, and 894TT genotype was higher in late sPE vs early sPE and normotensive pregnant. For VNTR b/a polymorphism, higher frequencies of aa genotype and a allele were observed in early sPE vs late sPE and normotensive pregnant. Besides, the frequency of haplotype T-b-C was higher in late sPE vs early sPE and normotensive pregnant. Considering the results found for eNOS polymorphisms, it is possible to suggest that the functional alterations induced by these two polymorphisms may influence the time of severe PE onset, although both alterations are putatively associated with low NO bioavailability. However, other studies are necessary to validate these findings and clarify this issue. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Glycogen functions as a carbohydrate reserve in a variety of organisms and its metabolism is highly regulated. The activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of the synthesis and degradation processes, respectively, are regulated by allosteric modulation and reversible phosphorylation. To identify the protein kinases affecting glycogen metabolism in Neurospora crassa, we performed a screen of 84 serine/threonine kinase knockout strains. We identified multiple kinases that have already been described as controlling glycogen metabolism in different organisms, such as NcSNF1, NcPHO85, NcGSK3, NcPKA, PSK2 homologue and NcATG1. In addition, many hypothetical kinases have been implicated in the control of glycogen metabolism. Two kinases, NcIME-2 and NcNIMA, already functionally characterized but with no functions related to glycogen metabolism regulation, were also identified. Among the kinases identified, it is important to mention the role of NcSNF1. We showed in the present study that this kinase was implicated in glycogen synthase phosphorylation, as demonstrated by the higher levels of glycogen accumulated during growth, along with a higher glycogen synthase (GSN) ±glucose 6-phosphate activity ratio and a lesser set of phosphorylated GSN isoforms in strain Ncsnf1KO, when compared with the wild-type strain. The results led us to conclude that, in N. crassa, this kinase promotes phosphorylation of glycogen synthase either directly or indirectly, which is the opposite of what is described for Saccharomyces cerevisiae. The kinases also play a role in gene expression regulation, in that gdn, the gene encoding the debranching enzyme, was down-regulated by the proteins identified in the screen. Some kinases affected growth and development, suggesting a connection linking glycogen metabolism with cell growth and development.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a potent vasodilator and plays a prominent role in regulating the cardiovascular system. Decreased basal NO release may predispose to cardiovascular diseases. Evidence suggests that the 27 nt repeat polymorphism of the intron 4 in the eNOS gene may regulate eNOS expression. On the other hand, some recent reports strongly suggest an association between methylmercury (MeHg) exposures and altered NO synthesis. In the present study, we investigate the contribution of the 27-pb tandem repeat polymorphism on nitric oxide production, which could enhance susceptibility to cardiovascular disease in the MeHg-exposed study population. Two-hundred-two participants (98 men and 104 women), all chronically exposed to MeHg through fish consumption were examined. Mean blood Hg concentration and nitrite plasma concentration were 50.5 +/- 35.4 mu g/L and 251.4 +/- 106.3 nM, respectively. Mean systolic and diastolic blood pressure were 120.1 +/- 19.4 mm Hg and 72.0 +/- 10.6 mm Hg, respectively. Mean body mass index was 24.5 +/- 4.3 kg/m(2) and the mean heart rate was 69.8 +/- 11.8 bpm. There were no significant differences in age, arterial blood pressure, body mass index or cardiac frequency between genotype groups (all P>0.05). However, we observed different nitrite concentrations in the genotypes groups, with lower nitrite levels for the 4a4a genotype carriers. Age, gender and the presence of intron 4 polymorphism contributed to nitrite reduction as a result of blood Hg concentration. Taken together, our results show that the 27 nt repeat polymorphism of the intron 4 in the eNOS gene increases susceptibility to cardiovascular diseases after MeHg exposure by modulating nitric oxide levels. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Abnormal regulation of glycogen synthase kinase 3-beta (GSK3B) activity has been implicated in the pathophysiology of mood disorders. Many pharmacological agents, including antidepressants, can modulate GSK3B. The aim of the present study was to investigate the effect of short-and long-term sertraline treatment on the expression and phosphorylation of GSK3B in platelets of patients with late-life major depression. Methods: Thirty-nine unmedicated elderly adults with major depressive disorder (MOD) were initially included in this study. The comparison group comprised 18 age-matched, healthy individuals. The expression of total and Ser-9 phosphorylated GSK3B (pGSK3B) was determined by Enzyme Immunometric Assay (EIA) in platelets of patients and controls at baseline, and after 3 and 12 months of sertraline treatments for patients only. During this period, patients were continuously treated with therapeutic doses of sertraline. GSK3B activity was indirectly estimated by calculating the proportion of inactive (phosphorylated) forms (pGSK3B) in relation to the total expression of the enzyme (i.e.. GSK3B ratio). Results: Depressed patients had significantly higher levels of pGSK3B as compared to controls (p < 0.001). Within the MDD group, after 3 months of sertraline treatment no significant changes were observed in GSK3B expression and phosphorylation state, as compared to baseline levels. However, after 12 months of treatment we found a significant increase in the expression of total GSK3B (p = 0.05), in the absence of any significant changes in pGSK3B (p = 0.12), leading to a significant reduction in GSK3B ratio (p = 0.001). Conclusions: Our findings indicate that GSK3B expression was upregulated by the continuous treatment with sertraline, along with an increment in the proportion of active forms of the enzyme. This is compatible with an increase in overall GSK3B activity, which may have been induced by the long-term treatment of late-life depression with sertraline. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Galectin-3 has been implicated in the tumor development via its mediation of the Wnt signaling pathway. Likewise, glycogen synthase kinase-3beta (GSK3 beta) also plays a role in the Wnt signaling pathway by controlling the levels of cytoplasmic beta-catenin. Altered GSK3 beta expression has been described in various tumors, but to date, there are no studies evaluating its expression in models of oral carcinogenesis. Additionally, it is unknown whether the absence of galectin-3 regulates the expression of GSK3 beta. To this end, Gal3-deficient (Gal3(-/-)) and wild-type (Gal3(+/+)) male mice were treated with 4NQO for 16 weeks and sacrificed at week 16 and 32. The tongues were removed, processed, and stained with H&E to detect dysplasias and carcinomas. An immunohistochemical assay was performed to determine the level of P-GSK3 beta-Ser9 expression in both groups. Carcinomas were more prevalent in Gal3(+/+) than Gal3(-/-) mice (55.5% vs. 28.5%), but no statistical difference was reached. In the dysplasias, the proportion of cells positive for P-GSK3 beta-Ser9 was slightly higher in Gal3(+/+) than Gal3(-/-) mice (63% vs. 61%). In the carcinomas, a significant difference between Gal3(+/+) and Gal3(-/-) mice was found (74% vs. 59%; p=0.02). P-GSK3 beta-Ser9-positive cells slightly decreased from the progression of dysplasias to carcinomas in Gal3(-/-) mice (61% vs. 59%; p>0.05). However, a significant increase in P-GSK3 beta-Ser9 expression was observed from dysplasias to carcinomas in Gal3(+/+) mice (63% vs. 74%; p=0.01). In conclusion, these findings suggest that fully malignant transformation of the tongue epithelium is associated with increased P-GSK3 beta-Ser9 expression in Gal3(+/+) mice, but not in Gal3(-/-) mice.
Resumo:
The present study aimed to investigate the association of endothelial nitric oxide synthase (eNOS) gene polymorphisms with primary open angle glaucoma (POAG). We conducted a case-control study that included 90 patients with POAG and 127 healthy controls whose blood samples were genotyped for the functional polymorphisms T-786C and Glu298Asp of the eNOS gene by Taqman fluorescent allelic discrimination assay. The T-786C polymorphism was significantly associated as a risk factor for POAG among women (OR: 228; 95% CI: 1.11 to 4.70, p = 0.024) and marginally associated to the risk of POAG in the patients >= 52 years of age at diagnosis (OR: 2.11; 95% CI: 0.98 to 4.55, p = 0,055). However, these results was not confirmed after adjustments for gender, age, self-declared skin color, tobacco smoking and eNOS genotypes by multivariate logistic regression model (OR: 2.08; 95% CI: 0.87 to 5.01, p = 0.101 and OR: 2.20; 95% CI: 0.95 to 5.12, p = 0.067, respectively). The haplotype CG of T-786C and Glu298Asp showed a borderline association with risk of POAG in the overall analysis (OR: 1.76; 95% CI: 0.98 to 3.14, p = 0.055) and among women (OR: 2.02; 95% CI: 0.98 to 4.16, p = 0.052). Furthermore, the CG haplotype was significantly associated with the development of POAG for the age at diagnosis group >= 52 years (OR: 3.48; 95% CI: 1.54 to 7.84, p = 0.002). We suggested that haplotypes of the polymorphisms T-786C and Glu298Asp of eNOS may interact with gender and age in modulating the risk of POAG. (C) 2012 Elsevier B.V. All rights reserved.