967 resultados para ATOMIC-FORCE MICROSCOPE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Y2(1-x) Gd2xSiWO8 : A ( 0 <= x <= 1; A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films have been prepared on silica glass substrates through the sol - gel dip-coating process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscope (AFM), scanning electron microscopy (SEM) and photoluminescence spectra as well as lifetimes were used to characterize the resulting films. The results of the XRD indicated that the films began to crystallize at 800 degrees C and crystallized completely at 1000 degrees C. The AFM and SEM study revealed that the phosphor films, which mainly consisted of closely packed grains with an average size of 90 - 120 nm with a thickness of 660 nm, were uniform and crack free. Owing to an efficient energy transfer from the WO42- groups to the activators, the doped lanthanide ion ( A) showed its characteristic f - f transition emissions in crystalline Y2(1-x) Gd2xSiWO8 (0 <= x <= 1) films. The optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined to be 21, 5, 3 and 7 mol% of Y3+ in Y2SiWO8 films, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si(OC2H5)(4) (TEOS) as the main starting materials, Ca2R8(SiO4)(6)O-2:A (R = Y, La, Gd; A = EU3+, Tb3+) phosphor films have been dip-coated on quartz glass substrates through the sol-gel process. X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the 1000 degreesC annealed films are isomorphous and crystallize with the silicate oxyapatite structure. AFM and SEM studies revealed that the phosphor films consisted of homogeneous particles ranging from 30 to 90 nm, with an average thickness of 1.30 mum. The Eu3+ and Tb3+ show similar spectral properties independent of R 3, in the films due to their isomorphous crystal structures. However, both the emission intensity and lifetimes of Eu3+ and Tb3+ in Ca2R8(SiO4)(6)O-2 (R = Y, La, Gd) films decrease in the sequence of R = Gd > R = Y > R = La, which have been explained in accordance with the crystal structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic/inorganic hybrid Langmuir-Blodgett (LB) films were obtained by the compact organization of poly(1,2-dihydro-2,2,4-trimethyl)quinoline (PQ), octadecylamine (ODA) and rare earth-substituted heteropolymolybdates. They were characterized by surface pressure-area (pi-A) isotherms, absorption spectra, fluorescence spectra, atomic force microscope (AFM) and scanning tunneling microscopy (STM). The atomic force microscope revealed a granular surface texture of nanosized rare earth-substituted heteropolymolybdate. The scanning tunneling microscopy indicated that the hybrid LB films containing rare earth-substituted heteropolymolybdates had the better electrical conductivity than LB film of PQ/ODA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three kinds of hybrid organic/inorganic Langmuir-Blodgett films are obtained by the compact organization of poly (1, 2-dihydro-2,2,4-trimethyl)quinoline (abridged as PQ), octadecylamine(abridged as OA) and rare earth-substituted heteropolyanions [abridged as RE(PW11,)(2), RE=Ce-II, Eu-II, Gd-II] using the Langmuir-Blodgett technique. They are characterized by the pi-A isotherms, the absorption spectra, the fluorescence spectra and the atomic force microscope. The scanning tunneling microscopy shows that the conductivity of the hybrid LB films is much better after heteropolyanions having been incorporated in the films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three kinds of hybrid Langmuir-Blodgett films are obtained by the organization of poly(1-hydro-2,2,4-trimethyl)quinoline (PQ), stearic acid(SA) and rare earth-substituted heteropolymolybdates (RE(PMo11)(2), RE = Ce-III, Eu-III, La-III) using the Langmuir-Blodgett technique. They are characterized by pi-A isotherms, absorption spectra, fluorescence spectra, IR and atomic force microscope. The absorption spectra indicate that the molecules of PQ and heteropolymolybdates are incorporated into the LB films. The atomic force microscope reveals that heteropolymolybdates aggregate at the surface of the LB film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binary CNBR/PP-g-GMA and ternary CNBR/PP/PP-g-GMA thermoplastic elastomers were prepared by reactive blending carboxy nitrile rubber (CNBR) powder with nanometer dimension and polypropylene functionalized with glycidyl methacrylate (PP-g-GMA). Morphology observation by using an atomic force microscope (AFM) and TEM revealed that the size of CNBR dispersed phase in CNBR/PP-g-GMA binary blends was much smaller than that of the corresponding CNBR/PP binary blends. Thermal behavior of CNBR/PP-g-GMA and CNBR/PP blends was studied by DSC. Comparing with the plain PP-g-GMA, T, of PP-g-GMA in CNBR/PP-g-GMA blends increased about 10degreesC. Both thermodynamic and kinetic effects would influence the crystallization behavior of PP-g-GMA in CNBR/PP-g-GMA blends. At a fixed content of CNBR, the apparent viscosity of the blending system increased with increasing the content of PP-g-GMA. FTIR spectrum verified that the improvement of miscibility of CNBR and PP-g-GMA was originated from the reaction between carboxy end groups of CNBR and epoxy groups of GMA grafted onto PP molecular chains. Comparing with CNBR/PP blends, the tensile strength, stress at 100% strain, and elongation at break of CNBR/PP-g-GMA blends were greatly improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning probe lithography (SPL), employing the tip of an atomic force microscope to mechanically pattern various materials in nanoscale region has provided a simple but significant method for making nanostructures. We use this technique for the lithography of several kinds of substrate surfaces. The tip performance has been found to be a crucial factor in the lithographic process. Four types of cantilevers are employed in nanolithography, including standard silicon nitride (DNP), tapping mode(TM) etched silicon (TESP(W)), uncoated silicon cantilever (NSC21/50) and conductive platinum/iridium-coated probe. Results demonstrate that tips with smaller spring constants can not be used for physically scribing and nanomanipulating in our experiment. The possible mechanism of our experiment is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IrO2/SnO2 (10%:90%, molar ratio) electrodes (ITEs) were prepared by the sol-gel method as an alternative to the electrode-position and thermal decomposition process. The electrodes were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS). From the results of XRD, oxide films prepared at low temperature were in amorphous state, while hydrous IrO2 crystal and cassiterite phase SnO2 were formed at 300 degreesC or even to 500 degreesC. The highly porous structure was confirmed by AFM. The electrochemical experiments demonstrated that the sol-gel method made the ITEs having a fast electron transfer process with good stability and the optimal preparation temperature was 400 degreesC for the highest electroactivity. Furthermore, the electrocatalysis of pyrocatechol on the electrodes was investigated. A quasi-reversible process occurred and a linear range over three orders magnitude (1 x 10(-2) - 10 mM) was obtained by differential pulse voltammetry (DPV). Meanwhile the detection limit of pyrocatechol was 5 x 10(-3) mM. This study indicated that the sol-gel method was an appropriate route to prepare the IrO2/SnO2 electrodes for the electrocatalytic of pyrocatechol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both bare and self-assembled monolayer (SAM) protected gold substrate could be etched by allyl bromide according to atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometric (ICPMS) analysis results. With this allyl bromide ink material, negative nanopatterns could be fabricated directly by dip-pen nanolithography (DPN) on SAMs of 16-mercaptohexadecanoic acid (MHA) on Au(111) substrate. A tip-promoted etching mechanism was proposed where the gold-reactive ink could penetrate the MHA resist film through tip-induced defects resulting in local corrosive removal of the gold substrate. The fabrication mechanism was also confirmed by electrochemical characterization, energy dispersive spectroscopy (EDS) analysis and fabrication of positive nanopatterns via a used DPN tip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhodamine B (RB)-doped organic-inorganic silica films and their patterning were fabricated by a sol-gel process combined with a soft lithography. The resulted film samples were characterized by atomic force microscope (AFM), optical microscope and UV/Vis absorption and photoluminescence excitation and emission spectra. The effects of the concentration of the RB dye and heat treatment temperature on the optical properties of the hybrid silica films have been studied. Four kinds of patterning structures with film line widths of 5, 10, 20 and 50 mum have been obtained by micromolding in capillaries by a soft lithography technique. The RB-doped hybrid silica films present a red color, with an excitation and emission bands around 564 and 585 mum, respectively. With increasing the RB concentration, the emission intensity of the RB-doped hybrid silica films increases and the emission maximum presents a red shift. The emission intensity of the films decreases with increasing the heat treatment temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior of horseradish peroxidase (HRP) in the dimyristoyl phosphatidylcholine (DMPC) bilayer on the glassy carbon (GC) electrode was studied by cyclic voltammetry. The direct electron transfer of HRP was observed in the DMPC bilayer. Only a small cathodic peak was observed for HRP on the bare GC electrode. The electron transfer of HRP in the DMPC membrane is facilitated by DMPC membrane. UV-Vis and circular dichroism (CD) spectroscopy were used to study the interaction between HRP and DMPC membrane. On binding to the DMPC membrane the secondary structure of HRP remains unchanged while there is a substantial change in the conformation of the heme active site. Tapping mode atomic force microscopy (AFM) was first applied for the investigation on the structure of HRP adsorbed on supported phospholipid bilayer on the mica and on the bare mica. HRP molecules adsorb and aggregate on the mica without DMPC bilayer. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed in the DMPC bilayer. The adsorption of HRP in the DMPC bilayer changes drastically the domains and defects in the DMPC bilayer due to a strong interaction between HRP and DMPC films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mica, as a bridge of the study for combining between quartz crystal microbalance (QCM) and atomic force microscope (AFM), was successfully modified onto the piezoelectric quartz crystal (PQC). This mica-modified piezoelectric quartz crystal (mica-PQC) can be stably oscillated with a shift frequency of +/-1 Hz per half an hour in air. Using this mica-PQC, the processes of DNA adsorbed onto the mica surface were studied in liquid phase. The results show that a bivalent cation, such as Mn2+, can be used as an ionic bridge to immobilize DNA on mica surface. The image of DNA on the mica surface was also obtained by AFM. Mica-PQC gives the possibility of a combination between QCM and AFM in situ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning probe microscopy was used to simultaneously determine the molecular chain structure and intrinsic mechanical properties, including anisotropic elastic modulus and friction, for lamellae of highly oriented high-density polyethylene (HDPE) obtained by the melt-drawn method. The molecular-scale image of the highly oriented lamellae by friction force microscopy (FFM) clearly shows that the molecular chains are aligned parallel to the drawing direction, and the periodicities along and perpendicular to the drawing direction are 0.26 and 0.50 nm, respectively. The results indicate that the exposed planes of the lamellae resulting from the melt-drawn method are (200), which is consistent with results of transmission electron microscopy and electron diffraction. Because of the high degree of anisotropy in the sample, coming from alignment of the molecular chains along the drawing direction, the measured friction force, F, determined by FFM is strongly dependent on the angle, theta, between the scanning direction and the chain axis. The force increases as theta is increased from 0 degrees (i.e., parallel to the chain axis) to 90 degrees (i.e., perpendicular to the chain axis). The structural anisotropy was also found to strongly influence the measurements of the transverse chain modulus of the polymer by the nanoindentation technique. The measured value of 13.8 GPa with transverse modulus was larger than the value 4.3 GPa determined by wide-angle X-ray diffraction, which we attributed to anisotropic deformation of the lamellae during nanoindentation measurements that was not accounted for by the elastic treatment we adopted from Oliver and Pharr. The present approach using scanning probe microscopy has the advantage that direct correlations between the nanostructure, nanotribology, and nanomechanical properties of oriented samples can be determined simultaneously and simply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled monolayer of natural single-stranded DNA (ssDNA) from dl:natured plasmid DNA and pBR322/PstI marker was first observed on Au(111) by low-current STM (Lc-STM). The width of ssDNA stripe measured is 0.9 +/- 0.1 nm, which is just half of the theoretical width of double-stranded DNA (dsDNA). Each ssDNA stripe consists of bright and dark parts. alternatively; the period of two adjacent bright parts in the same ssDNA stripe measured is 0.4 +/- 0.1 nm, which is consistent with the theoretical distance between two adjacent base pairs in ssDNA. The stripe orientations in ssDNA domains are predominately at angles of 0 degrees, 60 degrees or 120 degrees relative to crystallographically faceted steps on the gold surface. The electrochemical experiment indicated that it was ssDNA but not dsDNA that was absorbed on Au(111)surface. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In situ electrochemical scanning tunneling microscopy (ECSTM) and an electrochemical quartz crystal microbalance (EQCM) have been employed to follow the adsorption/desorption processes of phenanthraquinone (PQ sat. in 0.1 mol l(-1) HClO4, solution) accompanied with an electrochemical redox reaction on the Au electrode. The result shows that: (1) the reduced form PQH(2) adsorbed at the Au electrode and the desorption occurred when PQH(2) was oxidized to PQ; (2) the adsorption process initiates at steps or kinks which provide high active sites on the electrode surface for adsorption, and as the potential shifts to negative, a multilayer of PQH(2) may be formed at the Au electrode; (3) the reduced PQH(2) adsorbed preferentially in the area where the tip had been scanned continually; this result suggests that the tip induction may accelerate the adsorption of PQH(2) on the Au(111) electrode. Two kinds of possible reason have been discussed; (4) high resolution STM images show the strong substrate lattice information and the weak monolayer adsorbate lattice information simultaneously. The PQH(2) molecules pack into a not perfectly ordered condensed physisorbed layer at potentials of 0.1 and 0.2 V with an average lattice constant a = 11.5 +/- 0.4 Angstrom, b = 11.5 +/- 0.4 Angstrom, and gamma = 120 +/- 2 degrees; the molecular lattice is rotated with respect to the substrate lattice by about 23 +/- 2 degrees. (C) 1997 Elsevier Science S.A.