637 resultados para ARYL
Resumo:
Oxidation of spiroketones 3a–f with DDQ in dry benzene gave tropone derivatives 4a–f and DDHQ esters 5a–f (cis -cis isomer 6a–f, (cis -cis isomer 7a–f). While the aryl substituted spirokeone 17a gave a 2:1 mixture of 19a and the corresponding trans -trans isomer, the aryl substituted spiroketones 17b–d gave exclusively trans-trans isomers 19b–d. Heating acid chloride of acid 9c with DDHQ resulted in compounds 4a and 7a, thus confirming the structures assigned. Mechanism of formation of these compounds has been rationalised. A detailed study of 2D 1H-1H COSY, 1H-13C COSY, HMBC and 2D NOESY of compound 7d led to complete assignment of 1H and 13C NMR signals and its solution conformation.
Resumo:
The title compound, C25H19N3, is composed of an aryl-substituted pyrazole ring connected to an aryl-substituted isoquinoline ring system with a dihedral angle of 52.7 (1)degrees between the pyrazole ring and the isoquinoline ring system. The dihedral angle between the pyrazole ring and the phenyl ring attached to it is 27.4 (1)degrees and the dihedral angle between the isoquinoline ring system and the phenyl ring attached to it is 19.6 (1)degrees.
Resumo:
Bicovalently linked tetraphenylporphyrins bearing dioxypentane groups at the opposite (transoid, H4A) and adjacent (cisoid, H4B) aryl groups have been synthesised. Protonation of the free-base porphyrins leads to fully protonated species H8A4+/H8A4+ accompanied by expansion of cavity size of the bisporphyrins. The electrochemical redox studies of these porphyrins and their Zinc(II) derivatives revealed that the first ring oxidation proceeds through a two-electron process while the second ring oxidation occurs at two distinct one-electron steps indicating unsymmetrical charge distribution in the oxidized intermediate. The axial ligation properties of the Zinc(Il) derivatives of H4A/H4B with DABCO and PMDA investigated by spectroscopic and single crystal X-ray diffraction studies showed predominant existence of 1: I complex. The Zn2A.DABCO complex assumes an interesting eclipsed structure wherein DABCO is located inside the cavity between the two porphyrin planes with Zn-N distances at 2.08 and 2.22 Å. The Zn atoms are pulled into the cavity due to coordination towards nitrogen atoms of DABCO and deviate from the mean porphyrin plane by 0.35 Å. The electrochemical redox potentials of the axially ligated metal derivatives are found to be sensitive function of the relative coordinating ability of the ligands and the conformation of the hosts.
Resumo:
When sodium borohydride is added to aqueous solutions of 2,4-dinitrophenylamino acids and related derivatives, an intense red color is formed. Measurement of the red color, with a 420 filter, permits the determination of such compounds in concentrations of 0.01 to 0.06 μmole per ml. with a precision to 2%. The reaction is highly specific-while 2,4-dinitroaniline will react to the test, o-, m-, and p-nitroanilines, 2,4-dinitrophenyl aryl or alkyl ethers, and 2,4-dinitrophenyl-imidazole and pyrrolidine derivatives will not. Heretofore aromatic nitro groups have been considered resistant to attack by sodium borohydride. The method, as developed, is applicable to the evaluation of the degree of substitution of protein amino groups by fluorodinitrobenzene.
Resumo:
Dimethyl 3-(aryl)-3,6-dihydro-2H-1,3-oxazine4,5-dicarboxylate structure assigned for the products obtained in the Bronsted acid catalyzed reaction of dimethyl but-2-ynoates with anilines and an excess of formaldehyde in methanol has been revised to methyl 1-(aryl)-3-(methoxymethyl)-4,5-dioxopyrrolidine-3-carboxylate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The pattern of expression of the genes involved in the utilization of aryl beta-glucosides such as arbutin and salicin is different in the genus Shigella compared to Escherichia coli. The results presented here indicate that the homologue of the cryptic bgl operon of E. coli is conserved in Shigella sonnei and is the primary system involved in beta-glucoside utilization in the organism. The organization of the bgl genes in 5. sonnei is similar to that of E. coli; however there are three major differences in terms of their pattern of expression. (i) The bglB gene, encoding phospho-beta-glucosidase B, is insertionally inactivated in 5. sonnei. As a result, mutational activation of the silent bgl promoter confers an Arbutin-positive (Arb(+)) phenotype to the cells in a single step; however, acquiring a Salicin-positive (Sal(+)) phenotype requires the reversion or suppression of the bglB mutation in addition. (ii) Unlike in E. coli, a majority of the activating mutations (conferring the Arb(+) phenotype) map within the unlinked hns locus, whereas activation of the E. coli bgl operon under the same conditions is predominantly due to insertions within the bglR locus. (iii) Although the bgl promoter is silent in the wild-type strain of 5. sonnei (as in the case of E. coli), transcriptional and functional analyses indicated a higher basal level of transcription of the downstream genes. This was correlated with a 1 bp deletion within the putative Rho-independent terminator present in the leader sequence preceding the homologue of the bglG gene. The possible evolutionary implications of these differences for the maintenance of the genes in the cryptic state are discussed.
Resumo:
Heterocyclic urea derivatives play an important role as anticancer agents because of their good inhibitory activity against receptor tyrosine kinases (RTKs), raf kinases, protein tyrosine kinases (PTKs), and NADH oxidase, which play critical roles in many aspects of tumorigenesis. Benzothiazole moiety constitutes an important scaffold of drugs, possessing several pharmacological functions, mainly the anticancer activity. Based on these interesting properties of benzothiazoles and urea moiety to obtain new biologically active agents, we synthesized a series of novel 1-((S)-2-amino-4,5,6.7-tetrahydrobenzo[d]thiazol-6-yl)-3-(substituted phenyl)urea derivatives and evaluated for their efficacy as antileukemic agents against two human leukemic cell lines (K562 and Reh). These compounds showed good and moderate cytotoxic effect to cancer cell lines tested. Compounds with electron-withdrawing chloro and fluoro substituents on phenyl ring showed good activity and compounds with electron-donating methoxy group showed moderate activity. Compound with electron-withdrawing dichloro substitution on phenyl ring of aryl urea showed good activity. Further, lactate dehydrogenase (LDH) assay, flow cytometric analysis of annexin V-FITC/propidium iodide (PI) double staining and DNA fragmentation studies showed that compound with dichloro substitution on phenyl ring of aryl urea can induce apoptosis.
Resumo:
Pituitary adenomas are common benign neoplasms. Although most of them are sporadic, a minority occurs in familial settings. Heterozygous germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were found to underlie familial pituitary adenomas, a condition designated as pituitary adenoma predisposition (PAP). PAP confers incomplete penetrance of mostly growth hormone (GH) secreting adenomas in young patients, who often lack a family history of pituitary adenomas. This thesis work aimed to clarify the molecular and clinical characteristics of PAP. Applying the multiplex ligation-dependent probe amplification assay (MLPA), we found large genomic AIP deletions to account for a subset of PAP. Therefore, MLPA could be considered in PAP suspected patients with no AIP mutations found with conventional sequencing. We generated an Aip mouse model to examine pituitary tumorigenesis in vivo. The heterozygous Aip mutation conferred complete penetrance of pituitary adenomas that were mostly GH-secreting, rendering the phenotype of the Aip mouse similar to that of PAP patients. We suggest that AIP may function as a candidate gatekeeper gene in somatotrophs. To clarify molecular mechanisms of tumorigenesis, we elucidated the expression of AIP-related molecules in human and mouse pituitary tumors. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT) was reduced in mouse Aip-deficient adenomas, and similar ARNT reduction was also evident in human AIP mutation positive adenomas. This suggests that in addition to participating in the hypoxia pathway, estrogen receptor signaling and xenobiotic response pathways, ARNT may play a role in AIP-related tumorigenesis. We also studied the characteristics and the response to therapy of PAP patients and found them to have an aggressive disease phenotype with young age at onset. Therefore, improvement in treatment outcomes of PAP patients would require their efficient identification and earlier diagnosis of the pituitary adenomas. The possible role of the RET proto-oncogene in tumorigenesis of familial AIP mutation negative pituitary adenomas was evaluated, but none of the found RET germline variants were considered pathogenic. Surprisingly, RET immunohistochemistry suggested possible underexpression of RET in AIP mutation positive pituitary adenomas an observation that merits further investigation.
Resumo:
A human primary lung carcinoma cell line (HPL-R1) established from the tumor biopsy of a lung cancer patient, lacking in cytochrome P1-450 [aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH)], was cloned and used to obtain variants deficient in the expression of thymidine-kinase via treatment with 5-bromo-2'-deoxyuridine, and selection for drug resistance phenotype. The variant cell line, precharacterized for thymidine kinase negative phenotype, was transfected with the thymidine kinase gene bearing p R-tk and px1-tk plasmids. Transfections from both the plasmids, demonstrated a frequency of 5.5 X 10(-5). The transfectants showed a 76-100% retention of the transferred phenotype. These data suggest that transfection in variant human cells can approach significant levels of stability observed with rodent cell recipients.
Resumo:
A theoretical conformational analysis of fenamates, which are N-arylated derivatives of anthranilic acid or 2-aminonicotinic acid with different substituents on the aryl (phenyl) group, is reported. The analysis of these analgesics, which are believed to act through the inhibition of prostaglandin biosynthesis, was carried out using semi-empirical potential functions. The results and available crystallographic observations have been critically examined in terms of their relevance to drug action. Crystallographic studies of these drugs and their complexes have revealed that the fenamate molecules share a striking invariant feature, namely, the sixmembered ring bearing the carboxyl group is coplanar with the carboxyl group and the bridging imino group,the coplanarity being stabilized by resonance interactions and an internal hydrogen bond between the imino and carboxyl groups. The results of the theoretical analysis provide a conformational rationale for the observed invariant coplanarity. The second sixmembered ring, which provides hydrophobicity in a substantial part of the molecule, has limited conformational flexibility in meclofenamic, mefenamic and flufenamic acids. Comparison of the conformational energy maps of these acids shows that they could all assume the same conformation when bound to the relevant enzyme. The present study provides a structural explanation for the difference in the activity of niflumic acid, which can assume a conformation in which the whole molecule is nearly planar. The main role of the carboxyl group appears to be to provide a site for intermolecular interactions in addition to helping in stabilizing the invariant coplanar feature and providing hydrophilicity at one end of the molecule. The fenamates thus provide a good example of conformation- dependent molecular asymmetry.
Resumo:
A new case of the uncommon cis-trans enantiomerism is presented. The titled anhydride adducts were prepared in good yields by the known reaction of three 6-arylfulvenes with maleic anhydride (aryl = phenyl, p-tolyl and p-anisyl). The exo adducts were converted to the corresponding imides by reaction with (1S)-1-(naphth-1-yl)ethylamine in similar to 80% yields, and the resulting diastereomeric imides separated by silica gel column chromatography. They were hydrolysed and recyclised to the chiral anhydrides, in `one-pot' with 10% NaOH-EtOH, followed by treatment with 2 M HCl, in similar to 40% yields. The titled anhydrides were thus obtained in homochiral form, in enantiomeric purities (generally) of similar to 90% as indicated by chiral HPLC. The chiral anhydrides were also converted to the corresponding imides (presumably stereospecifically), by treatment with ammonia solution in excellent yields. The crystal structure of one of the above diastereomeric imides (derived from 6-phenylfulvene) was determined, and based on the known (S)-configuration of the naphthylethylamine moiety, the `configurations' of the original anhydride adducts were assigned. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Utilization of the aryl-beta-glucosides salicin or arbutin in most wild-type strains of E. coli is achieved by a single-step mutational activation of the bgl operon. Shigella sonnei, a branch of the diverse E. coli strain tree, requires two sequential mutational steps for achieving salicin utilization as the bglB gene, encoding the phospho-beta-glucosidase B, harbors an inactivating insertion. We show that in a natural isolate of S. sonnei, transcriptional activation of the gene SSO1595, encoding a phospho-beta-glucosidase, enables salicin utilization with the permease function being provided by the activated bgl operon. SSO1595 is absent in most commensal strains of E. coli, but is present in extra-intestinal pathogens as bgcA, a component of the bgc operon that enables beta-glucoside utilization at low temperature. Salicin utilization in an E. coli bglB laboratory strain also requires a two-step activation process leading to expression of BglF, the PTS-associated permease encoded by the bgl operon and AscB, the phospho-beta-glucosidase B encoded by the silent asc operon. BglF function is needed since AscF is unable to transport beta-glucosides as it lacks the IIA domain involved in phopho-relay. Activation of the asc operon in the Sal(+) mutant is by a promoter-up mutation and the activated operon is subject to induction. The pathway to achieve salicin utilization is therefore diverse in these two evolutionarily related organisms; however, both show cooperation between two silent genetic systems to achieve a new metabolic capability under selection.
Resumo:
The thermal stability of ring-substituted arylammonium nitrates has been investigated using thermal methods of analysis. The decomposition temperature of meta- and para-substituted derivatives is found to be linearly related to the Hammett substituent constant σ. The activation energy for decomposition determined by isothermal gravimetry increases with the increasing basicity of the corresponding amine. The results suggest that the primary step in the decomposition process of these salts is proton abstraction by the anion from the arylammonium ion.
Resumo:
Two series of flame retardant polymers, viz. polyarylazo phosphate and phosphoramide esters, were synthesized by solution polycondensation of 4,4′-dihydroxyazobenzene with various aryl phosphorodichlorides and aryl phosphoramidic dichlorides. They were characterized by i.r. 1H-, 13C- and 31P-NMR spectroscopy. The molar mass, thermal and flammability studies were carried out by viscometry, thermogravimetry and limiting oxygen index respectively to examine the influence of the phosphate and phosphoramide linkages. The polyphosphoramide esters possess better thermal and flammability characteristics than the polyphosphate esters.
Resumo:
By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.