999 resultados para A. soldadoensis d13C
Resumo:
Natural gas hydrates are clathrates in which water molecules form a crystalline framework that includes and is stabilized by natural gas (mainly methane) at appropriate conditions of high pressures and low temperatures. The conditions for the formation of gas hydrates are met within continental margin sediments below water depths greater than about 500 m where the supply of methane is sufficient to stabilize the gas hydrate. Observations on DSDP Leg 11 suggested the presence of gas hydrates in sediments of the Blake Outer Ridge. Leg 76 coring and sampling confirms that, indeed, gas hydrates are present there. Geochemical evidence for gas hydrates in sediment of the Blake Outer Ridge includes (1) high concentrations of methane, (2) a sediment sample with thin, matlike layers of white crystals that released a volume of gas twenty times greater than its volume of pore fluid, (3) a molecular distribution of hydrocarbon gases that excluded hydrocarbons larger than isobutane, (4) results from pressure core barrel experiments, and (5) pore-fluid chemistry. The molecular composition of the hydrocarbons in these gas hydrates and the isotopic composition of the methane indicate that the gas is derived mainly from microbiological processes operating on the organic matter within the sediment. Although gas hydrates apparently are widespread on the Blake Outer Ridge, they probably are not of great economic significance as a potential, unconventional, energy resource or as an impermeable cap for trapping upwardly migrating gas at Site 533.
Resumo:
Carbon isotopic composition of predominantly marine kerogen in latest Oligocene mudstones of the Peru Margin ODP 682A Hole shows an about 3.5? increase with decreasing age. Py-GC and elemental (C=N ratio) analysis of the kerogen plus sulphur isotopic study together with earlier knowledge on geological setting and organic geochemistry results in a better understanding of depositionary environment and allows to separation of the influence of concentration of water dissolved carbon dioxide (ce) on kerogen delta13C from that of other factors (bacterial degradation, sea surface temperature, DIC delta13C, productivity, and admixture of land plant OM). Based on this analysis, the major part of the kerogen shift is considered as a result of the latest Oligocene decrease of marine photosynthetic carbon isotopic fractionation in the Peru Margin photic zone, which in turn possibly reflects a simultaneous drop in atmospheric CO2 level. Uncertainties in the evaluation of the factors affecting the marine photosynthetic carbon isotopic fractionation and the extent of ocean-atmosphere disequilibrium do not permit calculation of the decrease of the atmospheric CO2.
Resumo:
An integrated chemostratigraphic (87Sr/86Sr, d13C and 18O) study of benthic foraminifera is presented for a 210 m-thick, intermediate depth (upper/middle bathyal transition), Miocene nannofossil ooze section of Ocean Drilling Program Site 1120, Campbell Plateau off New Zealand. Our results indicate that new 87Sr/86Sr, d13C and d18O profiles are wholly consistent with their respective Miocene reference curves. These observations facilitate identification of a total of five reliable chemostratigraphic datums, which are based on the fundamental structural changes in the 87Sr/86Sr curve and paired simultaneous d13C and d18O events. The resultant age-depth relationship clearly shows that the Miocene (20-5 Ma) biopelagic sedimentation on the Campbell Plateau was essentially continuous at a moderate to high, linear sedimentation rate (17.5 m/m.y. with an exception of the uppermost 13 m). Our findings do not support the shipboard biostratigraphic age model, which assumes that the critical early-middle Miocene transition was interrupted by a major hiatus (<~3 m.y.). Because of its unique bathymetric setting at a paleowater-depth of ~ 600 m, which is among the shallowest of the coeval isotopically studied deep-sea sections in the South Pacific/Southern Ocean, Site 1120 will serve as a reference section for surveying the evolution of intermediate-water paleoceanography in the Southern Hemisphere across the middle Miocene climatic transition.