994 resultados para 71-514
Resumo:
An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.
Resumo:
Lower and Upper Cretaceous sediments of the Maurice Ewing Bank, Site 511 (black shales, mudstones, zeolitic clays, and nannofossil chalk and ooze, 361 m thick) are characterized by an assemblage of planktonic foraminifers of low systematic diversity, including over 50 species. Representatives of Hedbergella, Globigerinelloides, Archaeoglobigerina, Whiteinella, Rugoglobigerina, and Heterohelix are predominant; species of Ticinella, Praeglobotruncana, Globotruncana, Schackoina, and Planoglobulina associated with some interbeds occur in smaller numbers. Planktonic foraminifers enable us to subdivide the Cretaceous sediments into Barremian-Aptian, Albian, upper Cenomanian, Turonian, Coniacian-Santonian, Santonian, Campanian, and upper Campanian-Maestrichtian intervals. The Lower Cretaceous (Albian) and Upper Cretaceous (upper Cenomanian-Turonian) are separated by a distinct hiatus and unconformity. In the Upper Cretaceous section, a hiatus may be present at the top of the Campanian. The upper Cenomanian-Santonian sediments are reduced in thickness, whereas the Campanian-Maestrichtian interval is expanded. In the Barremian-Aptian black shales, planktonic foraminifers are very rare: they were deposited in shallow water under anoxic conditions. In the Albian, when sedimentation conditions became oxidizing and the depth increased to 200-400 meters, they became more common. By the end of the Upper Cretaceous, depths appear to increase to 2000 meters. In the interbeds of calcareous sediments, planktonic foraminifers are common; in interbeds of zeolitic clays they are rare or absent (dissolution facies). Alternation of these types of sediments is especially characteristic of the Coniacian-lower Campanian, testifying to abrupt CCD fluctuations. The planktonic foraminifers of the Falkland Plateau belong to the Austral Province of the Southern Hemisphere. In their systematic composition they are extremely similar to microfauna of the Boreal Province of the Northern Hemisphere.
Resumo:
Sites 511 and 512 (Falkland Plateau) and 513 (Argentine Basin) penetrated calcareous-siliceous oozes of the middle and upper Eocene and lower Oligocene with rather numerous planktonic foraminifers. Upper Oligocene, Miocene, Pliocene, and Quaternary sections are composed mostly of siliceous sediments (Sites 511-514) where planktonic foraminifers are rare or absent. High-latitude planktonic foraminifers of the Austral Province are characterized by impoverished assemblages - only representatives of Globigerina, Globigerinita, Globorotaloides, and Globorotalia with a rounded peripheral margin are found. In the Paleogene, these species are supplemented, in lesser amounts, by representatives of Globigerapsis, Acarinina, Pseudogloboquadrina, Pseudohastigerina, and Chiloguembelina. Assemblages of planktonic foraminifers have low stratigraphic resolution, especially in the upper Oligocene-Quaternary. This reflects the generally deteriorating Cenozoic climate, which evinced a sharp change in the upper Oligocene that is connected with initiation of the circum-Antarctic current near the Paleogene/Neogene boundary. Comparison of Paleogene and Neogene planktonic foraminifers of the South Atlantic (Falkland Plateau, Argentine Basin, 46-51°S) and the North Atlantic (Rockall Plateau, 55-56°N) indicates that the South Atlantic climate was much colder than that of the same latitudes of the North Atlantic. Paleogene oozes of the Falkland Plateau rest unconf ormably on Maestrichtian sediments and in their turn are overlain unconformably by Neogene-Quaternary oozes. Cenozoic sections are stratigraphically discontinuous: periods of intensive biogenic sedimentation resulting in a thick succession of sediments alternated with periods of nondeposition and strong erosion that resulted in hiatuses and unconformities. In the Argentine Basin, Oligocene calcareous-siliceous oozes rest on basalts of the oceanic basement; they are replaced upward in the section by Neogene-Quaternary siliceous oozes with some hiatuses. Planktonic foraminifers here clearly demonstrate the processes of oceanic subsidence and CCD fluctuations as well as Polar Front migrations during Cenozoic time. Fifty species of planktonic foraminifers are discussed and illustrated.