891 resultados para 3d Ultrasound
Resumo:
Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.
Resumo:
La industria de los videojuegos crece exponencialmente y está ya superando a otras industrias punteras del ocio. En este proyecto, nos hemos planteado la realización de un videojuego con visualización en el espacio real 3D. Para la realización del videojuego se ha usado el siguiente software: Blender para diseñar los modelos 3D, C++ como lenguaje de programación para desarrollar el código y un conjunto de librerías básicas para desarrollar un videojuego llamadas Ogre3d (Motor Gráfico). La lógica del movimiento 3D y los choques entre las partículas del juego ha sido diseñada enteramente en este proyecto acorde con las necesidades del videojuego, y de forma compatible a los ficheros de Blender y a las librerías OGRE3D.
Resumo:
Treball de recerca realitzat per un alumne d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. Aquest treball de recerca és un projecte sobre el disseny i la creació d’un programa informàtic de codi obert amb l’objectiu de mesurar acceleracions en tres dimensions utilitzant el comandament de la wii, també conegut com a wiimote. Per tant, s'ha creat un programa que es connecta amb el wiimote, en rep les dades, les guarda i les representa per analitzar posteriorment diversos tipus de moviments i les seves acceleracions. Per tal de fer això es va aprofitar una biblioteca de funcions de codi obert ja existent que aporta les funcions principals per a la comunicació i control del comandament. El codi obert és un concepte que s’utilitza per als projectes informàtics, el codi dels quals està a la disposició de qui el necessiti. La biblioteca utilitzada està escrita en llenguatge C i per a plataforma Linux, i per tal d’aprofitar-la es va haver d’aprendre a utilitzar tant el llenguatge com la plataforma ja que no s'hi havia treballat mai abans. Gràcies a aquest projecte s'ha tingut la possibilitat de veure el funcionament d’algunes tecnologies alternatives i veure’n els avantatges sobre les convencionals o propietàries. Així doncs, des del punt de vista de l'autor, ha estat útil i enriquidor el fet de realitzar-lo.
Resumo:
Aquesta memòria descriu el projecte de final de carrera anomenat "Disseny d’un Battle Chess 3D (2)", que tracta de la creació, modelat i animació de peces per a un joc d’escacs en 3 dimensions amb certes temàtiques, i que posteriorment s’integren amb el projecte "Disseny d’un Battle Chess 3D (1)" per a formar un joc interactiu d’escacs en un applet de Java. Es descriuen les eines utilitzades, les fases de creació, tècniques simbòliques, mètodes més emprats, proves sotmeses, limitacions, i finalment s’arriba una conclusió de treball aconseguit.
Resumo:
Objective: To assess reproducibility and feasibility of amusculoskeletal ultrasound (US) score for rheumatoid arthritis amongrheumatologist with diverse expertise in US, working in private orhospital practice.Methods: The Swiss Sonography in Arthritis and Rheumatism(SONAR) group has developed a semi-quantitative score for RA usingOMERACT criteria for synovitis and erosion. The score was taught torheumatologists trained in US through two workshops. Subsequently,they were encouraged to practice in their office. For the study, we used6 US machines of different quality, each with a different patient.19 readers randomly selected among rheumatologists who haveattended both workshops, were asked to score anonymously at leastone patient. To assess whether some factors influence the score, weasked each reader to answer questionnaire describing his experiencewith US.Results: 19 rheumatologists have performed 29 scans, each patienthaving been evaluated by 4 to 6 readers. Median time for examcompletion was 20 minutes (range 15 to 60 mn). 53% ofrheumatologists work in private practice. Graph 1 show the global greyscale score for each patient. Weighted kappa was calculated for eachpair of reader using stata11. Almost all kappa of poor agreement wereobtained with a low quality device or by an assessor who havepreviously performed less than 5 scores himself.Conclusions: This is the first study to show an US score for RAfeasible by rheumatologists with diverse expertise in US both in privateand hospital practice. Reproducibility seemed to be influenced by thequality of device and previous experience with the score.
Resumo:
Quantitative ultrasound (QUS) appears to be developing into an acceptable, low-cost and readily-accessible alternative to dual X-ray absorptiometry (DXA) measurements of bone mineral density (BMD) in the detection and management of osteoporosis. Perhaps the major difficulty with their widespread use is that many different QUS devices exist that differ substantially from each other, in terms of the parameters they measure and the strength of empirical evidence supporting their use. But another problem is that virtually no data exist outside of Caucasian or Asian populations. In general, heel QUS appears to be most tested and most effective. Some, but not all heel QUS devices are effective assessing fracture risk in some, but not all populations, the evidence being strongest for Caucasian females > 55 years old, though some evidence exists for Asian females > 55 and for Caucasian and Asian males > 70. Certain devices may allow to estimate the likelihood of osteoporosis, but very limited evidence exists supporting QUS use during the initiation or monitoring of osteoporosis treatment. Likely, QUS is most effective when combined with an assessment of clinical risk factors (CRF); with DXA reserved for individuals who are not identified as either high or low risk using QUS and CRF. However, monitoring and maintenance of test and instrument accuracy, precision and reproducibility are essential if QUS devices are to be used in clinical practice; and further scientific research in non-Caucasian, non-Asian populations clearly is compulsory to validate this tool for more widespread use.
Resumo:
Malonate, methylmalonate and propionate are potentially neurotoxic metabolites in branched-chain organic acidurias. Their effects were tested on cultured 3D rat brain cell aggregates, using dosages of 0.1, 1.0 and 10.0 mM with a short but intense (twice a day over 3 days) and a longer but less intense treatment (every 3 rdday over 9 days). CNS cell-specific immunohistochemical stainings allowed the follow-up of neurons (axons, phosphorylated medium-weight neurofilament), astrocytes (glial fibrillary acidic protein) and oligodendrocytes (myelin basic protein). Methylmalonate and malonate were quantified by tandem mass spectrometry. Tandem mass spectrometry analysis of harvested brain cell aggregates revealed clear intracellular accumulation of methylmalonate and malonate. In immunohistochemical stainings oligodendrocytes appeared the most affected brain cells. The MBP signal disappeared already at 0.1 mM treatment with each metabolite. Mature astrocytes were not affected by propionate, while immature astrocytes on intense treatment with propionate developed cell swelling. 1 mM methylmalonate induced cell swelling of both immature and mature astrocytes , while 1 mM malonate only affected mature astrocytes. Neurons were not affected by methylmalonate, but 10.0 mM malonate on less intense treatment and 0.1, 1.0 and 10.0 mM propionate on intense treatment affected axonal growth. Our study shows significant uptake and deleterious effects of these metabolites on brain cells, principally on astrocytes and oligodendrocytes. This may be explained by the absence of the pathway in glial cells, which thus are not able to degrade these metabolites. Further studies are ongoing to elucidate the underlying mechanisms of the observed neurotoxic effects.
Resumo:
The action of various DNA topoisomerases frequently results in characteristic changes in DNA topology. Important information for understanding mechanistic details of action of these topoisomerases can be provided by investigating the knot types resulting from topoisomerase action on circular DNA forming a particular knot type. Depending on the topological bias of a given topoisomerase reaction, one observes different subsets of knotted products. To establish the character of topological bias, one needs to be aware of all possible topological outcomes of intersegmental passages occurring within a given knot type. However, it is not trivial to systematically enumerate topological outcomes of strand passage from a given knot type. We present here a 3D visualization software (TopoICE-X in KnotPlot) that incorporates topological analysis methods in order to visualize, for example, knots that can be obtained from a given knot by one intersegmental passage. The software has several other options for the topological analysis of mechanisms of action of various topoisomerases.
Resumo:
En la carrera del mundo de los videojuegos por alcanzar insospechables cotas de realismo con las que seguir sorprendiendo y enganchando al público, los motores de física se han convertido en la herramienta de presente y futuro. Atraídos por el auge de esta nueva tecnología, hemos lidiado con los motores referencia hoy día en el mercado, seleccionando luego uno de ellos e implementando un humilde videojuego de carreras como muestra de su potencial y de los conocimientos adquiridos.
Resumo:
This study describes the validation of a new wearable system for assessment of 3D spatial parameters of gait. The new method is based on the detection of temporal parameters, coupled to optimized fusion and de-drifted integration of inertial signals. Composed of two wirelesses inertial modules attached on feet, the system provides stride length, stride velocity, foot clearance, and turning angle parameters at each gait cycle, based on the computation of 3D foot kinematics. Accuracy and precision of the proposed system were compared to an optical motion capture system as reference. Its repeatability across measurements (test-retest reliability) was also evaluated. Measurements were performed in 10 young (mean age 26.1±2.8 years) and 10 elderly volunteers (mean age 71.6±4.6 years) who were asked to perform U-shaped and 8-shaped walking trials, and then a 6-min walking test (6MWT). A total of 974 gait cycles were used to compare gait parameters with the reference system. Mean accuracy±precision was 1.5±6.8cm for stride length, 1.4±5.6cm/s for stride velocity, 1.9±2.0cm for foot clearance, and 1.6±6.1° for turning angle. Difference in gait performance was observed between young and elderly volunteers during the 6MWT particularly in foot clearance. The proposed method allows to analyze various aspects of gait, including turns, gait initiation and termination, or inter-cycle variability. The system is lightweight, easy to wear and use, and suitable for clinical application requiring objective evaluation of gait outside of the lab environment.
Resumo:
Meta-analysis of prospective studies shows that quantitative ultrasound of the heel using validated devices predicts risk of different types of fracture with similar performance across different devices and in elderly men and women. These predictions are independent of the risk estimates from hip DXA measures.Introduction Clinical utilisation of heel quantitative ultrasound (QUS) depends on its power to predict clinical fractures. This is particularly important in settings that have no access to DXA-derived bone density measurements. We aimed to assess the predictive power of heel QUS for fractures using a meta-analysis approach.Methods We conducted an inverse variance random effects meta-analysis of prospective studies with heel QUS measures at baseline and fracture outcomes in their follow-up. Relative risks (RR) per standard deviation (SD) of different QUS parameters (broadband ultrasound attenuation [BUA], speed of sound [SOS], stiffness index [SI], and quantitative ultrasound index [QUI]) for various fracture outcomes (hip, vertebral, any clinical, any osteoporotic and major osteoporotic fractures) were reported based on study questions.Results Twenty-one studies including 55,164 women and 13,742 men were included in the meta-analysis with a total follow-up of 279,124 person-years. All four QUS parameters were associated with risk of different fracture. For instance, RR of hip fracture for 1 SD decrease of BUA was 1.69 (95% CI 1.43-2.00), SOS was 1.96 (95% CI 1.64-2.34), SI was 2.26 (95%CI 1.71-2.99) and QUI was 1.99 (95% CI 1.49-2.67). There was marked heterogeneity among studies on hip and any clinical fractures but no evidence of publication bias amongst them. Validated devices from different manufacturers predicted fracture risks with similar performance (meta-regression p values > 0.05 for difference of devices). QUS measures predicted fracture with a similar performance in men and women. Meta-analysis of studies with QUS measures adjusted for hip BMD showed a significant and independent association with fracture risk (RR/SD for BUA = 1.34 [95%CI 1.22-1.49]).Conclusions This study confirms that heel QUS, using validated devices, predicts risk of different fracture outcomes in elderly men and women. Further research is needed for more widespread utilisation of the heel QUS in clinical settings across the world.