910 resultados para 3D feature extraction


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation established a state-of-the-art programming tool for designing and training artificial neural networks (ANNs) and showed its applicability to brain research. The developed tool, called NeuralStudio, allows users without programming skills to conduct studies based on ANNs in a powerful and very user friendly interface. A series of unique features has been implemented in NeuralStudio, such as ROC analysis, cross-validation, network averaging, topology optimization, and optimization of the activation function’s slopes. It also included a Support Vector Machines module for comparison purposes. Once the tool was fully developed, it was applied to two studies in brain research. In the first study, the goal was to create and train an ANN to detect epileptic seizures from subdural EEG. This analysis involved extracting features from the spectral power in the gamma frequencies. In the second application, a unique method was devised to link EEG recordings to epileptic and non-epileptic subjects. The contribution of this method consisted of developing a descriptor matrix that can be used to represent any EEG file regarding its duration and the number of electrodes. The first study showed that the inter-electrode mean of the spectral power in the gamma frequencies and its duration above a specific threshold performs better than the other frequencies in seizure detection, exhibiting an accuracy of 95.90%, a sensitivity of 92.59%, and a specificity of 96.84%. The second study yielded that Hjorth’s parameter activity is sufficient to accurately relate EEG to epileptic and non-epileptic subjects. After testing, accuracy, sensitivity and specificity of the classifier were all above 0.9667. Statistical tests measured the superiority of activity at over 99.99 % certainty. It was demonstrated that 1) the spectral power in the gamma frequencies is highly effective in locating seizures from EEG and 2) activity can be used to link EEG recordings to epileptic and non-epileptic subjects. These two studies required high computational load and could be addressed thanks to NeuralStudio. From a medical perspective, both methods proved the merits of NeuralStudio in brain research applications. For its outstanding features, NeuralStudio has been recently awarded a patent (US patent No. 7502763).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Shipboard power systems have different characteristics than the utility power systems. In the Shipboard power system it is crucial that the systems and equipment work at their peak performance levels. One of the most demanding aspects for simulations of the Shipboard Power Systems is to connect the device under test to a real-time simulated dynamic equivalent and in an environment with actual hardware in the Loop (HIL). The real time simulations can be achieved by using multi-distributed modeling concept, in which the global system model is distributed over several processors through a communication link. The advantage of this approach is that it permits the gradual change from pure simulation to actual application. In order to perform system studies in such an environment physical phase variable models of different components of the shipboard power system were developed using operational parameters obtained from finite element (FE) analysis. These models were developed for two types of studies low and high frequency studies. Low frequency studies are used to examine the shipboard power systems behavior under load switching, and faults. High-frequency studies were used to predict abnormal conditions due to overvoltage, and components harmonic behavior. Different experiments were conducted to validate the developed models. The Simulation and experiment results show excellent agreement. The shipboard power systems components behavior under internal faults was investigated using FE analysis. This developed technique is very curial in the Shipboard power systems faults detection due to the lack of comprehensive fault test databases. A wavelet based methodology for feature extraction of the shipboard power systems current signals was developed for harmonic and fault diagnosis studies. This modeling methodology can be utilized to evaluate and predicate the NPS components future behavior in the design stage which will reduce the development cycles, cut overall cost, prevent failures, and test each subsystem exhaustively before integrating it into the system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lung cancer is one of the most common types of cancer and has the highest mortality rate. Patient survival is highly correlated with early detection. Computed Tomography technology services the early detection of lung cancer tremendously by offering aminimally invasive medical diagnostic tool. However, the large amount of data per examination makes the interpretation difficult. This leads to omission of nodules by human radiologist. This thesis presents a development of a computer-aided diagnosis system (CADe) tool for the detection of lung nodules in Computed Tomography study. The system, called LCD-OpenPACS (Lung Cancer Detection - OpenPACS) should be integrated into the OpenPACS system and have all the requirements for use in the workflow of health facilities belonging to the SUS (Brazilian health system). The LCD-OpenPACS made use of image processing techniques (Region Growing and Watershed), feature extraction (Histogram of Gradient Oriented), dimensionality reduction (Principal Component Analysis) and classifier (Support Vector Machine). System was tested on 220 cases, totaling 296 pulmonary nodules, with sensitivity of 94.4% and 7.04 false positives per case. The total time for processing was approximately 10 minutes per case. The system has detected pulmonary nodules (solitary, juxtavascular, ground-glass opacity and juxtapleural) between 3 mm and 30 mm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and / or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. Results: The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Conclusions: Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The content-based image retrieval is important for various purposes like disease diagnoses from computerized tomography, for example. The relevance, social and economic of image retrieval systems has created the necessity of its improvement. Within this context, the content-based image retrieval systems are composed of two stages, the feature extraction and similarity measurement. The stage of similarity is still a challenge due to the wide variety of similarity measurement functions, which can be combined with the different techniques present in the recovery process and return results that aren’t always the most satisfactory. The most common functions used to measure the similarity are the Euclidean and Cosine, but some researchers have noted some limitations in these functions conventional proximity, in the step of search by similarity. For that reason, the Bregman divergences (Kullback Leibler and I-Generalized) have attracted the attention of researchers, due to its flexibility in the similarity analysis. Thus, the aim of this research was to conduct a comparative study over the use of Bregman divergences in relation the Euclidean and Cosine functions, in the step similarity of content-based image retrieval, checking the advantages and disadvantages of each function. For this, it was created a content-based image retrieval system in two stages: offline and online, using approaches BSM, FISM, BoVW and BoVW-SPM. With this system was created three groups of experiments using databases: Caltech101, Oxford and UK-bench. The performance of content-based image retrieval system using the different functions of similarity was tested through of evaluation measures: Mean Average Precision, normalized Discounted Cumulative Gain, precision at k, precision x recall. Finally, this study shows that the use of Bregman divergences (Kullback Leibler and Generalized) obtains better results than the Euclidean and Cosine measures with significant gains for content-based image retrieval.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of studies in the areas of Biomedical Engineering and Health Sciences have employed machine learning tools to develop methods capable of identifying patterns in different sets of data. Despite its extinction in many countries of the developed world, Hansen’s disease is still a disease that affects a huge part of the population in countries such as India and Brazil. In this context, this research proposes to develop a method that makes it possible to understand in the future how Hansen’s disease affects facial muscles. By using surface electromyography, a system was adapted so as to capture the signals from the largest possible number of facial muscles. We have first looked upon the literature to learn about the way researchers around the globe have been working with diseases that affect the peripheral neural system and how electromyography has acted to contribute to the understanding of these diseases. From these data, a protocol was proposed to collect facial surface electromyographic (sEMG) signals so that these signals presented a high signal to noise ratio. After collecting the signals, we looked for a method that would enable the visualization of this information in a way to make it possible to guarantee that the method used presented satisfactory results. After identifying the method's efficiency, we tried to understand which information could be extracted from the electromyographic signal representing the collected data. Once studies demonstrating which information could contribute to a better understanding of this pathology were not to be found in literature, parameters of amplitude, frequency and entropy were extracted from the signal and a feature selection was made in order to look for the features that better distinguish a healthy individual from a pathological one. After, we tried to identify the classifier that best discriminates distinct individuals from different groups, and also the set of parameters of this classifier that would bring the best outcome. It was identified that the protocol proposed in this study and the adaptation with disposable electrodes available in market proved their effectiveness and capability of being used in different studies whose intention is to collect data from facial electromyography. The feature selection algorithm also showed that not all of the features extracted from the signal are significant for data classification, with some more relevant than others. The classifier Support Vector Machine (SVM) proved itself efficient when the adequate Kernel function was used with the muscle from which information was to be extracted. Each investigated muscle presented different results when the classifier used linear, radial and polynomial kernel functions. Even though we have focused on Hansen’s disease, the method applied here can be used to study facial electromyography in other pathologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Person re-identification involves recognizing a person across non-overlapping camera views, with different pose, illumination, and camera characteristics. We propose to tackle this problem by training a deep convolutional network to represent a person’s appearance as a low-dimensional feature vector that is invariant to common appearance variations encountered in the re-identification problem. Specifically, a Siamese-network architecture is used to train a feature extraction network using pairs of similar and dissimilar images. We show that use of a novel multi-task learning objective is crucial for regularizing the network parameters in order to prevent over-fitting due to the small size the training dataset. We complement the verification task, which is at the heart of re-identification, by training the network to jointly perform verification, identification, and to recognise attributes related to the clothing and pose of the person in each image. Additionally, we show that our proposed approach performs well even in the challenging cross-dataset scenario, which may better reflect real-world expected performance. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poor sleep is increasingly being recognised as an important prognostic parameter of health. For those with suspected sleep disorders, patients are referred to sleep clinics which guide treatment. However, sleep clinics are not always a viable option due to their high cost, a lack of experienced practitioners, lengthy waiting lists and an unrepresentative sleeping environment. A home-based non-contact sleep/wake monitoring system may be used as a guide for treatment potentially stratifying patients by clinical need or highlighting longitudinal changes in sleep and nocturnal patterns. This paper presents the evaluation of an under-mattress sleep monitoring system for non-contact sleep/wake discrimination. A large dataset of sensor data with concomitant sleep/wake state was collected from both younger and older adults participating in a circadian sleep study. A thorough training/testing/validation procedure was configured and optimised feature extraction and sleep/wake discrimination algorithms evaluated both within and across the two cohorts. An accuracy, sensitivity and specificity of 74.3%, 95.5%, and 53.2% is reported over all subjects using an external validation
dataset (71.9%, 87.9% and 56%, and 77.5%, 98% and 57% is reported for younger and older subjects respectively). These results compare favourably with similar research, however this system provides an ambient alternative suitable for long term continuous sleep monitoring, particularly amongst vulnerable populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho propõe um estudo de sinais cerebrais aplicados em sistemas BCI (Brain-Computer Interface - Interfaces Cérebro Computador), através do uso de Árvores de Decisão e da análise dessas árvores com base nas Neurociências. Para realizar o tratamento dos dados são necessárias 5 fases: aquisição de dados, pré-processamento, extração de características, classificação e validação. Neste trabalho, todas as fases são contempladas. Contudo, enfatiza-se as fases de classificação e de validação. Na classificação utiliza-se a técnica de Inteligência Artificial denominada Árvores de Decisão. Essa técnica é reconhecida na literatura como uma das formas mais simples e bem sucedidas de algoritmos de aprendizagem. Já a fase de validação é realizada nos estudos baseados na Neurociência, que é um conjunto das disciplinas que estudam o sistema nervoso, sua estrutura, seu desenvolvimento, funcionamento, evolução, relação com o comportamento e a mente, e também suas alterações. Os resultados obtidos neste trabalho são promissores, mesmo sendo iniciais, visto que podem melhor explicar, com a utilização de uma forma automática, alguns processos cerebrais.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Melanoma is a type of skin cancer and is caused by the uncontrolled growth of atypical melanocytes. In recent decades, computer aided diagnosis is used to support medical professionals; however, there is still no globally accepted tool. In this context, similar to state-of-the-art we propose a system that receives a dermatoscopy image and provides a diagnostic if the lesion is benign or malignant. This tool is composed with next modules: Preprocessing, Segmentation, Feature Extraction, and Classification. Preprocessing involves the removal of hairs. Segmentation is to isolate the lesion. Feature extraction is considering the ABCD dermoscopy rule. The classification is performed by the Support Vector Machine. Experimental evidence indicates that the proposal has 90.63 % accuracy, 95 % sensitivity, and 83.33 % specificity on a data-set of 104 dermatoscopy images. These results are favorable considering the performance of diagnosis by traditional progress in the area of dermatology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simultaneous Localization and Mapping (SLAM) is a procedure used to determine the location of a mobile vehicle in an unknown environment, while constructing a map of the unknown environment at the same time. Mobile platforms, which make use of SLAM algorithms, have industrial applications in autonomous maintenance, such as the inspection of flaws and defects in oil pipelines and storage tanks. A typical SLAM consists of four main components, namely, experimental setup (data gathering), vehicle pose estimation, feature extraction, and filtering. Feature extraction is the process of realizing significant features from the unknown environment such as corners, edges, walls, and interior features. In this work, an original feature extraction algorithm specific to distance measurements obtained through SONAR sensor data is presented. This algorithm has been constructed by combining the SONAR Salient Feature Extraction Algorithm and the Triangulation Hough Based Fusion with point-in-polygon detection. The reconstructed maps obtained through simulations and experimental data with the fusion algorithm are compared to the maps obtained with existing feature extraction algorithms. Based on the results obtained, it is suggested that the proposed algorithm can be employed as an option for data obtained from SONAR sensors in environment, where other forms of sensing are not viable. The algorithm fusion for feature extraction requires the vehicle pose estimation as an input, which is obtained from a vehicle pose estimation model. For the vehicle pose estimation, the author uses sensor integration to estimate the pose of the mobile vehicle. Different combinations of these sensors are studied (e.g., encoder, gyroscope, or encoder and gyroscope). The different sensor fusion techniques for the pose estimation are experimentally studied and compared. The vehicle pose estimation model, which produces the least amount of error, is used to generate inputs for the feature extraction algorithm fusion. In the experimental studies, two different environmental configurations are used, one without interior features and another one with two interior features. Numerical and experimental findings are discussed. Finally, the SLAM algorithm is implemented along with the algorithms for feature extraction and vehicle pose estimation. Three different cases are experimentally studied, with the floor of the environment intentionally altered to induce slipping. Results obtained for implementations with and without SLAM are compared and discussed. The present work represents a step towards the realization of autonomous inspection platforms for performing concurrent localization and mapping in harsh environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.