808 resultados para 350506 Tourism Forecasting
Resumo:
This article argues that the terrorist bombings of hotels, pubs and nightclubs in Bali in October 2002, and in Mombasa one month later, were inaugural moments in the post-9/11 securitization of the tourism industry. Although practices of tourism and terrorism seem antithetical – one devoted to travel and leisure, the other to political violence – this article argues that their entanglement is revealed most clearly in the counter-terrorism responses that brought the everyday lives of tourists and tourism workers, as well as the material infrastructure of the tourism industry, within the orbit of a global security apparatus waging a ‘war on terror’. Drawing on critical work in international relations and geography, this article understands the securitization of tourism as part of a much wider logic in which the liberal order enacts pernicious modes of governance by producing a terrorist threat that is exceptional. It explores how this logic is reproduced through a cosmopolitan community symbolized by global travellers, and examines the measures taken by the tourism industry to secure this community (e.g. the physical transformations of hotel infrastructure and the provision of counter-terrorism training).
Resumo:
Wind energy has been identified as key to the European Union’s 2050 low carbon economy. However, as wind is a variable resource and stochastic by nature, it is difficult to plan and schedule the power system under varying wind power generation. This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact of the magnitude and variance of the offshore wind power forecast error on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price is analysed. The main findings of this research are that the magnitude of the offshore wind power forecast error has the largest impact on system generation costs and dispatch-down of wind, but the variance of the offshore wind power forecast error has the biggest impact on emissions costs and system marginal price. Overall offshore wind power forecast error variance results in a system marginal price increase of 9.6% in 2050.
Resumo:
Mortality models used for forecasting are predominantly based on the statistical properties of time series and do not generally incorporate an understanding of the forces driving secular trends. This paper addresses three research questions: Can the factors found in stochastic mortality-forecasting models be associated with real-world trends in health-related variables? Does inclusion of health-related factors in models improve forecasts? Do resulting models give better forecasts than existing stochastic mortality models? We consider whether the space spanned by the latent factor structure in mortality data can be adequately described by developments in gross domestic product, health expenditure and lifestyle-related risk factors using statistical techniques developed in macroeconomics and finance. These covariates are then shown to improve forecasts when incorporated into a Bayesian hierarchical model. Results are comparable or better than benchmark stochastic mortality models.
Resumo:
The paper addresses the issue of choice of bandwidth in the application of semiparametric estimation of the long memory parameter in a univariate time series process. The focus is on the properties of forecasts from the long memory model. A variety of cross-validation methods based on out of sample forecasting properties are proposed. These procedures are used for the choice of bandwidth and subsequent model selection. Simulation evidence is presented that demonstrates the advantage of the proposed new methodology.
Resumo:
Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364±64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.
Resumo:
The demand for sustainable development has resulted in a rapid growth in wind power worldwide. Despite various approaches have been proposed to improve the accuracy and to overcome the uncertainties associated with traditional methods, the stochastic and variable nature of wind still remains the most challenging issue in accurately forecasting wind power. This paper presents a hybrid deterministic-probabilistic method where a temporally local ‘moving window’ technique is used in Gaussian Process to examine estimated forecasting errors. This temporally local Gaussian Process employs less measurement data while faster and better predicts wind power at two wind farms, one in the USA and the other in Ireland. Statistical analysis on the results shows that the method can substantially reduce the forecasting error while more likely generate Gaussian-distributed residuals, particularly for short-term forecast horizons due to its capability to handle the time-varying characteristics of wind power.
Resumo:
Currently wind power is dominated by onshore wind farms in the British Isles, but both the United Kingdom and the Republic of Ireland have high renewable energy targets, expected to come mostly from wind power. However, as the demand for wind power grows to ensure security of energy supply, as a potentially cheaper alternative to fossil fuels and to meet greenhouse gas emissions reduction targets offshore wind power will grow rapidly as the availability of suitable onshore sites decrease. However, wind is variable and stochastic by nature and thus difficult to schedule. In order to plan for these uncertainties market operators use wind forecasting tools, reserve plant and ancillary service agreements. Onshore wind power forecasting techniques have improved dramatically and continue to advance, but offshore wind power forecasting is more difficult due to limited datasets and knowledge. So as the amount of offshore wind power increases in the British Isles robust forecasting and planning techniques are even more critical. This paper presents a methodology to investigate the impacts of better offshore wind forecasting on the operation and management of the single wholesale electricity market in the Republic of Ireland and Northern Ireland using PLEXOS for Power Systems. © 2013 IEEE.
Resumo:
Due to the variability of wind power, it is imperative to accurately and timely forecast the wind generation to enhance the flexibility and reliability of the operation and control of real-time power. Special events such as ramps, spikes are hard to predict with traditional methods using solely recently measured data. In this paper, a new Gaussian Process model with hybrid training data taken from both the local time and historic dataset is proposed and applied to make short-term predictions from 10 minutes to one hour ahead. A key idea is that the similar pattern data in history are properly selected and embedded in Gaussian Process model to make predictions. The results of the proposed algorithms are compared to those of standard Gaussian Process model and the persistence model. It is shown that the proposed method not only reduces magnitude error but also phase error.
Resumo:
There are many uncertainties in forecasting the charging and discharging capacity required by electric vehicles (EVs) often as a consequence of stochastic usage and intermittent travel. In terms of large-scale EV integration in future power networks this paper develops a capacity forecasting model which considers eight particular uncertainties in three categories. Using the model, a typical application of EVs to load levelling is presented and exemplified using a UK 2020 case study. The results presented in this paper demonstrate that the proposed model is accurate for charge and discharge prediction and a feasible basis for steady-state analysis required for large-scale EV integration.