960 resultados para 319.104
Resumo:
Sedimentary extractable organic matter was analyzed at three ODP Leg 104 sites in the Norwegian Sea. Organic carbon content ranged from less than 0.1% to a maximum of 1.8%. Extractable organic matter content and unresolved complex mixture concentrations were low and randomly distributed. Low levels of aliphatic (branched and normal) and aromatic hydrocarbons were detected in all of the sediments analyzed. Total aliphatic and aromatic hydrocarbon concentrations ranged from 176 to 3,214 and 6 to 820 ppb, respectively. The concentrations of individual aliphatic (n-C15 to n-C32) and aromatic (two- to five-ring) hydrocarbons were generally less than 50 ppb and less than 10 ppb, respectively. No significant trend with sub-bottom depth was observed in either bulk organic matter or individual hydrocarbon concentrations. The predominant source of Cenozoic sedimentary hydrocarbons is concluded to be ice-rafted debris from the adjacent continent. All sites contain a mixture of recycled, mature petroleum-related and terrestrially derived hydrocarbons.
Resumo:
The long-term record of glacial/interglacial cycles indicates three major paleoceanographic regimes in the Norwegian Sea. The period since the first major glaciation over Scandinavia at 2.56 Ma is characterized by high-frequency, low-amplitude oscillations of ice-rafted debris inputs, a lowered salinity, and decreased carbonate shell production in surface waters as well as overall strong carbonate dissolution at the sea floor. These conditions indicate a more zonal circulation pattern in the Northern Hemisphere and a relative isolation of surface and bottom waters in the Norwegian Sea. The generally temperate glacial climate was only interrupted by episodic weak intrusions of warm Atlantic waters. These intrusions have been detected in considerable magnitude only at Site 644, and thus are restricted to areas much closer to the Norwegian shelf than during earlier periods. The interval from 1.2 to 0.6 Ma is characterized by an increase in carbonate shell production and a better preservation, as well as a change in frequency patterns of ice-rafted debris inputs. This pattern reflects increasing meridionality in circulation-strengthening contrasts in the Norwegian Sea between strong glaciations and warm interglacials. The past 0.6 Ma reveal high-amplitude oscillations in carbonate records that are dominated by the 100-k.y. frequency pattern. Glacial/interglacial sedimentary cycles in the ODP Leg 104 drill sites reveal a variety of specific dark lithofacies. These dark diamictons reflect intense iceberg rafting in surface waters fed by surges along the front of marine-based parts of the continental ice sheets in the southeastern sector of the Norwegian Sea and are associated with resuspension of reworked fossil organic carbon and strong dissolution at the sea floor. Piling up of huge iceberg barriers along the Iceland-Faeroe-Scotland Ridge might have partially blocked off surface water connections with the North Atlantic during these periods
Resumo:
ODP Leg 104 recovered 914 m of volcanics at Site 642 on the Vøring Plateau in the Norwegian Sea. The upper series of these volcanics correlates with seaward-dipping seismic reflectors (DRS), and is tholeiitic in character. The lower series underlies the DRS and is broadly andesitic in character. Rb-Sr, Sm-Nd, and Pb isotopic analyses show that upper series samples have isotopic features characteristic of MORB, except for one dike sample that has a Pb isotopic composition that may indicate interaction of its parent magma with older continental crust. The five most silicic samples from the lower series, which occur high up in the sequence, define a 63 ± 19 Ma Rb-Sr whole-rock isochron age, and have an initial 87Sr/86Sr of 0.7116 ± 0.0004. Other lower series samples have lower initial 87Sr/86Sr, but all are greater than any upper series rock. The combined evidence of initial 87Sr/86Sr, initial epsilon-Nd values, Sm-Nd model ages, Pb isotopic compositions, and petrographic features clearly indicate that lower series rocks were derived, at least in part, from continental crustal source materials. That the DRS is underlain by rocks of continental character is an important observation, constraining models for the development of DRS-type passive continental margins.
Resumo:
Coarse-fraction studies of sediments recovered during ODP Leg 104 are used to reconstruct paleoclimatic and paleoceanographic environments on a time scale of 0.1 to 0.5 m.y. for the past 20 Ma. These investigations suggest that relatively warm climates and isolated deep water conditions prevailed prior to 13.6 Ma and between 5.6-4.8 Ma. The first major deep water outflow from the Norwegian-Greenland Sea into the North Atlantic took place at about 13.6 Ma. Progressive cooling linked to increased deep water renewal in the Norwegian-Greenland Sea appears to have occurred between 13.6-5.6 Ma and 4.8-3.1 Ma. A major onset of ice-rafted debris is recorded at 2.56 Ma. Terrigenous coarsefraction components show important fluctuations with two major peaks during the past 0.8 Ma.
Resumo:
The mineralogical and geochemical study of samples from Sites 642, 643, and 644 enabled us to reconstruct several aspects of the Cenozoic paleoenvironmental evolution (namely volcanism, climate, hydrology) south of the Norwegian Sea and correlate it with evolution trends in the northeast Atlantic. Weathering products of early Paleogene volcanic material at Rockall Plateau, over the Faeroe-Iceland Ridge and the Voring Plateau indicate a hot and moist climate (lateritic environment) existed then. From Eocene to Oligocene, mineralogical assemblages of terrigenous sediments suggest the existence of a warm but somewhat less moist climate at that time than during the early Paleogene. At the beginning of early Miocene, climatic conditions were warm and damp. The large amounts of amorphous silica in Miocene sediment could indicate an important flux of silica from the continent then, or suggest the formation of upwelling. Uppermost lower Miocene and middle to upper Miocene clay assemblages suggest progressive cooling of the climate from warm to temperate at that time. At the end of early Miocene, hydrological exchanges between the North Atlantic and the Norwegian Sea became intense and gave rise to an important change in the mineralogy of deposits. From Pliocene to Pleistocene, the variable mineralogy of deposits reflects alternating glacial/interglacial climatic episodes, a phenomenon observed throughout the North Atlantic.