895 resultados para 230117 Operations Research
Resumo:
We consider two “minimum”NP-hard job shop scheduling problems to minimize the makespan. In one of the problems every job has to be processed on at most two out of three available machines. In the other problem there are two machines, and a job may visit one of the machines twice. For each problem, we define a class of heuristic schedules in which certain subsets of operations are kept as blocks on the corresponding machines. We show that for each problem the value of the makespan of the best schedule in that class cannot be less than 3/2 times the optimal value, and present algorithms that guarantee a worst-case ratio of 3/2.
Resumo:
This paper considers the problem of sequencing n jobs in a two‐machine re‐entrant shopwith the objective of minimizing the maximum completion time. The shop consists of twomachines, M1 and M2 , and each job has the processing route (M1 , M2 , M1 ). An O(n log n)time heuristic is presented which generates a schedule with length at most 4/3 times that ofan optimal schedule, thereby improving the best previously available worst‐case performanceratio of 3/2.
Resumo:
The paper considers the three‐machine open shop scheduling problem to minimize themakespan. It is assumed that each job consists of at most two operations, one of which is tobe processed on the bottleneck machine, the same for all jobs. A new lower bound on theoptimal makespan is derived, and a linear‐time algorithm for finding an optimalnon‐preemptive schedule is presented.
Resumo:
This paper studies the problem of scheduling jobs in a two-machine open shop to minimize the makespan. Jobs are grouped into batches and are processed without preemption. A batch setup time on each machine is required before the first job is processed, and when a machine switches from processing a job in some batch to a job of another batch. For this NP-hard problem, we propose a linear-time heuristic algorithm that creates a group technology schedule, in which no batch is split into sub-batches. We demonstrate that our heuristic is a -approximation algorithm. Moreover, we show that no group technology algorithm can guarantee a worst-case performance ratio less than 5/4.
Resumo:
This paper considers the problem of processing n jobs in a two-machine non-preemptive open shop to minimize the makespan, i.e., the maximum completion time. One of the machines is assumed to be non-bottleneck. It is shown that, unlike its flow shop counterpart, the problem is NP-hard in the ordinary sense. On the other hand, the problem is shown to be solvable by a dynamic programming algorithm that requires pseudopolynomial time. The latter algorithm can be converted into a fully polynomial approximation scheme that runs in time. An O(n log n) approximation algorithm is also designed whi finds a schedule with makespan at most 5/4 times the optimal value, and this bound is tight.
Resumo:
The paper deals with the determination of an optimal schedule for the so-called mixed shop problem when the makespan has to be minimized. In such a problem, some jobs have fixed machine orders (as in the job-shop), while the operations of the other jobs may be processed in arbitrary order (as in the open-shop). We prove binary NP-hardness of the preemptive problem with three machines and three jobs (two jobs have fixed machine orders and one may have an arbitrary machine order). We answer all other remaining open questions on the complexity status of mixed-shop problems with the makespan criterion by presenting different polynomial and pseudopolynomial algorithms.
Resumo:
We study a two-machine open shop scheduling problem, in which one machine is not available for processing during a given time interval. The objective is to minimize the makespan. We show that the problem is NP-hard and present an approximation algorithm with a worst-case ratio of 4/3.
Resumo:
We motivate, derive, and implement a multilevel approach to the travelling salesman problem.The resulting algorithm progressively coarsens the problem, initialises a tour, and then employs either the Lin-Kernighan (LK) or the Chained Lin-Kernighan (CLK) algorithm to refine the solution on each of the coarsened problems in reverse order.In experiments on a well-established test suite of 80 problem instances we found multilevel configurations that either improved the tour quality by over 25% as compared to the standard CLK algorithm using the same amount of execution time, or that achieved approximately the same tour quality over seven times more rapidly. Moreover, the multilevel variants seem to optimise far better the more clustered instances with which the LK and CLK algorithms have the most difficulties.
Resumo:
We study a two-machine open shop scheduling problem, in which the machines are not continuously available for processing. No preemption is allowed in the processing of any operation. The objective is to minimize the makespan. We consider approximability issues of the problem with more than one non-availability intervals and present an approximation algorithm with a worst-case ratio of 4/3 for the problem with a single non-availability interval.
Resumo:
This paper considers a variant of the classical problem of minimizing makespan in a two-machine flow shop. In this variant, each job has three operations, where the first operation must be performed on the first machine, the second operation can be performed on either machine but cannot be preempted, and the third operation must be performed on the second machine. The NP-hard nature of the problem motivates the design and analysis of approximation algorithms. It is shown that a schedule in which the operations are sequenced arbitrarily, but without inserted machine idle time, has a worst-case performance ratio of 2. Also, an algorithm that constructs four schedules and selects the best is shown to have a worst-case performance ratio of 3/2. A polynomial time approximation scheme (PTAS) is also presented.
Resumo:
We consider the multilevel paradigm and its potential to aid the solution of combinatorial optimisation problems. The multilevel paradigm is a simple one, which involves recursive coarsening to create a hierarchy of approximations to the original problem. An initial solution is found (sometimes for the original problem, sometimes the coarsest) and then iteratively refined at each level. As a general solution strategy, the multilevel paradigm has been in use for many years and has been applied to many problem areas (most notably in the form of multigrid techniques). However, with the exception of the graph partitioning problem, multilevel techniques have not been widely applied to combinatorial optimisation problems. In this paper we address the issue of multilevel refinement for such problems and, with the aid of examples and results in graph partitioning, graph colouring and the travelling salesman problem, make a case for its use as a metaheuristic. The results provide compelling evidence that, although the multilevel framework cannot be considered as a panacea for combinatorial problems, it can provide an extremely useful addition to the combinatorial optimisation toolkit. We also give a possible explanation for the underlying process and extract some generic guidelines for its future use on other combinatorial problems.
Resumo:
We consider a single machine due date assignment and scheduling problem of minimizing holding costs with no tardy jobs tinder series parallel and somewhat wider class of precedence constraints as well as the properties of series-parallel graphs.
Resumo:
In this paper we provide a fairly complete complexity classification of various versions of the two-machine permutation flow shop scheduling problem to minimize the makespan in which some of the jobs have to be processed with no-wait in process. For some version, we offer a fully polynomial-time approximation scheme and a 43-approximation algorithm.
Resumo:
This paper considers two-machine flow shop scheduling problems with machine availability constraints. When the processing of a job is interrupted by an unavailability period of a machine, we consider both the resumable scenario in which the processing can be resumed when the machine next becomes available, and the semi-resumable scenario in which some portion of the processing is repeated but the job is otherwise resumable. For the problem with several non-availability intervals on the first machine under the resumable scenario, we present a fast (3/2)-approximation algorithm. For the problem with one non-availability interval under the semi-resumable scenario, a polynomial-time approximation scheme is developed.
Resumo:
In the scheduling literature, the notion of machine non availability periods is well known, for instance for maintenance. In our case of planning chemical experiments, we have special periods (the week-ends, holidays, vacations) where the chemists are not available. However, human intervention by the chemists is required to handle the starting and termination of the experiments. This gives rise to a new type of scheduling problems, namely problems of finding schedules that respect the operator non availability periods. These problems are analyzed on a single machine with the makespan as criterion. Properties are described and performance ratios are given for list scheduling and other polynomial-time algorithms.