997 resultados para 193-1191


Relevância:

20.00% 20.00%

Publicador:

Resumo:

China has reacted positively to Russia’s military intervention in Syria. The Chinese government perceives it as an element of the global fight against terrorism, and has emphasised the fact that Russia was acting in response to a request by the Syrian government. At the same time, Beijing has argued that the Syrian conflict cannot be resolved by military means and that a political compromise is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite+/-illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite+/-mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite+/-illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite+/-chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ~250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite+/-chlorite alteration formed at ~300°C; (2) chlorite+/-illite alteration at 235°C; (3) chlorite+/-illite and mixed layer clay alteration; and (4) chlorite+/-illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples. Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permeability of the ocean crust is one of the most crucial parameters for constraining submarine fluid flow systems. Active hydrothermal fields are dynamic areas where fluid flow strongly affects the geochemistry and biology of the surrounding environment. There have been few permeability measurements in these regions, especially in felsic-hosted hydrothermal systems. We present a data set of 38 permeability and porosity measurements from the PACMANUS hydrothermal field, an actively venting, felsic hydrothermal field in the eastern Manus Basin. Permeability was measured using a complex transient method on 2.54-cm minicores. Permeability varies greatly between the samples, spanning over five orders of magnitude. Permeability decreases with both depth and decreasing porosity. When the alteration intensity of individual samples is considered, relationships between depth and porosity and permeability become more clearly defined. For incompletely altered samples (defined as >5% fresh rock), permeability and porosity are constant with depth. For completely altered samples (defined as <5% fresh rock), permeability and porosity decrease with depth. On average, the permeability values from the PACMANUS hydrothermal field are greater than those in other submarine environments using similar core-scale laboratory measurements; the average permeability, 4.5 x 10-16 m**2, is two to four orders of magnitude greater than in other areas. Although the core-scale permeability is higher than in other seafloor environments, it is still too low to obtain the fluid velocities observed in the PACMANUS hydrothermal field based on simplified analytical calculations. It is likely that core-scale permeability measurements are not representative of bulk rock permeability of the hydrothermal system overall, and that the latter is predominantly fracture controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine organic matter (OM) sinks from surface waters to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as energy and carbon source, produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. We hypothesized that in the oligotrophic deep Arctic basin the molecular signal of freshly deposited primary produced OM is restricted to the surface sediment pore waters which should differ from bottom water and deeper sediment pore water in DOM composition. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether the signal of marine vs. terrigenous DOM is represented by different compounds preserved in the sediment pore waters and 3) whether there is any relation between Arctic Ocean ice cover and DOM composition. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer, were correlated with environmental parameters by partial least square analysis. The fresher marine detrital OM signal from surface waters was limited to pore waters from < 5 cm sediment depth. The productive ice margin stations showed higher abundances of peptides, unsaturated aliphatics and saturated fatty acids formulae, indicative of fresh OM/pigments deposition, compared to northernmost stations which had stronger aromatic signals. This study contributes to the understanding of the coupling between the Arctic Ocean productivity and its depositional regime, and how it will be altered in response to sea ice retreat and increasing river runoff.