875 resultados para 16s rRNA sequencing
Resumo:
It is believed that the exposure of organisms to harsh climate conditions may select for differential enzymatic activities, making the surviving organisms a very promising source for bioprospecting. Soil bacteria play an important role in degradation of organic matter, which is mostly due to their ability to decompose cellulose-based materials. This work focuses on the isolation and identification of cellulolytic bacteria from soil found in two environments with stressful climate conditions (Antarctica and the Brazilian semi-arid caatinga). Cellulolytic bacteria were selected using enrichments at high and low temperatures (4 or 60A degrees C) in liquid media (trypic soy broth-TSB and minimum salt medium-MM) supplemented with cellulose (1%). Many of the isolates (119 out of 254-46.9%) displayed the ability to degrade carboxymethyl-cellulose, indicating the presence of endoglucolytic activity, while only a minority of these isolates (23 out of 254-9.1%) showed exoglucolytic activity (degradation of avicel). The obtained isolates revealed a preferential endoglucolytic activity according to the temperature of enrichments. Also, the identification of some isolates by partial sequencing of the 16S rRNA gene indicated that the Bacteroidetes (e.g., Pedobacter, Chryseobacterium and Flavobacterium) were the main phylum of cellulolytic bacteria isolated from soil in Antarctica; the Firmicutes (e.g., Bacillus) were more commonly isolated from samples from the caatinga; and Actinobacteria were found in both types of soil (e.g., Microbacterium and Arthrobacter). In conclusion, this work reports the isolation of bacteria able to degrade cellulose-based material from soil at very low or very high temperatures, a finding that should be further explored in the search for cellulolytic enzymes to be used in the bioenergy industry.
Resumo:
This study correlated the composition of the spoilage bacterial flora with the main gaseous and volatile organic compounds (VOCs) found in the package headspace of spoiled, chilled, vacuum-packed meat. Fifteen chilled, vacuum-packed beef samples, suffering from blown pack spoilage, were studied using 16S rRNA clone sequencing. More than 50% of the bacteria were identified as lactic acid bacteria (LAB), followed by clostridia and enterobacteria. Fifty-one volatile compounds were detected in the spoiled samples. Although the major spoilage compounds were identified as alcohols and aldehydes, CO2 was identified as the major gas in the spoiled samples by headspace technique. Different species of bacteria contribute to different volatile compounds during meat spoilage. LAB played an important role in blown pack deterioration of the Brazilian beef studied.
Resumo:
Background Actinobaculum schaalii was first described as a causative agent for human infection in 1997. Since then it has mainly been reported causing urinary tract infections (UTI) in elderly individuals with underlying urological diseases. Isolation and identification is challenging and often needs molecular techniques. A. schaalii is increasingly reported as a cause of infection in humans, however data in children is very limited. Case presentation We present the case of an 8-month-old Caucasian boy suffering from myelomeningocele and neurogenic bladder who presented with a UTI. An ultrasound of the urinary tract was unremarkable. Urinalysis and microscopy showed an elevated leukocyte esterase test, pyuria and a high number of bacteria. Empiric treatment with oral co-trimoxazole was started. Growth of small colonies of Gram-positive rods was observed after 48 h. Sequencing of the 16S rRNA gene confirmed an A. schaalii infection 9 days later. Treatment was changed to oral amoxicillin for 14 days. On follow-up urinalysis was normal and urine cultures were negative. Conclusions A.schaalii is an emerging pathogen in adults and children. Colonization and subsequent infection seem to be influenced by the age of the patient. In young children with high suspicion of UTI who use diapers or in children who have known abnormalities of their urogenital tract, infection with A. schaalii should be considered and empiric antimicrobial therapy chosen accordingly.
Resumo:
Phenotypic and phylogenetic studies were performed on eight Gram-negative-staining, rod-shaped bacteria isolated from seals. Biochemical and physiological studies showed identical profiles for all of the isolates and indicated that they were related to the family Pasteurellaceae. 16S rRNA gene sequencing demonstrated that the organism represented a distinct cluster with two sublines within the family Pasteurellaceae with <96% sequence similarity to any recognized species. Multilocus sequence analysis (MLSA) including rpoB, infB and recN genes further confirmed these findings with the eight isolates forming a genus-like cluster with two branches. Genome relatedness as deduced from recN gene sequences suggested that the isolates represented a new genus with two species. On the basis of the results of the phylogenetic analysis and phenotypic criteria, it is proposed that these bacteria from seals are classified as Bisgaardia hudsonensis gen. nov., sp. nov. (the type species) and Bisgaardia genomospecies 1. The G+C content of the DNA was 39.5 mol%. The type strain of Bisgaardia hudsonensis gen. nov., sp. nov. is M327/99/2(T) (=CCUG 43067(T)=NCTC 13475(T)=98-D-690B(T)) and the reference strain of Bisgaardia genomospecies 1 is M1765/96/5 (=CCUG 59551=NCTC 13474).
Characterization of Pasteurellaceae-like bacteria isolated from clinically affected psittacine birds
Resumo:
AIMS: The aim of the present investigation was to identify and characterize Pasteurella-like isolates obtained from clinically affected psittacine birds. METHODS AND RESULTS: A total of 37 isolates from psittacine birds tentatively classified with the family Pasteurellaceae were characterized phenotypically. The genetic relationship was investigated by sequencing of partial rpoB and 16S rRNA genes for selected isolates. The results obtained were compared with the data from 16 reference strains. Nine isolates were identified as Gallibacterium spp., 16 as Volucribacter spp. or Volucribacter-like, while 11 isolates were classified as taxon 44 of Bisgaard. A single isolate was identified as Pasteurella multocida. CONCLUSIONS: Characterization of Pasteurellaceae by traditional methods is often inconclusive because of inconsistent reactions and phenotypic diversity. For the same reason, genotyping is essential to allow proper classification as demonstrated in the present study. SIGNIFICANCE AND IMPACT OF THE STUDY: Limited information exists on the isolation and significance of Pasteurellaceae associated with clinically affected psittacine birds showing signs of digestive and/or respiratory disorders. The present investigations demonstrated that these organisms are widely distributed among clinically affected birds, but isolation of these taxa cannot be unambiguously correlated with the symptoms observed.
Resumo:
Twenty coagulase-negative Staphylococcus strains displaying alpha-haemolysis (delta-haemolysin) on sheep-blood agar were isolated from the noses of different pigs in Switzerland. The strains were Gram-stain-positive, non-motile cocci, catalase-positive and coagulase-negative. Sequence analysis of the 16S rRNA gene, sodA, rpoB, dnaJ and hsp60 and phylogenetic characteristics revealed that the strains showed the closest relatedness to Staphylococcus microti CCM 4903(T) and Staphylococcus muscae DSM 7068(T). The strains can be differentiated from S. microti by the absence of mannose fermentation and arginine arylamidase and from S. muscae by the absence of beta-glucuronidase activity and production of alkaline phosphatase. The chosen type strain ARI 262(T) shared 20.1 and 31.9 % DNA relatedness with S. microti DSM 22147(T) and S. muscae CCM 4903(T), respectively, by DNA-DNA hybridization. iso-C(15 : 0), anteiso-C(15 : 0) and iso-C(17 : 0) were the most common fatty acids. Cell-wall structure analysis revealed the peptidoglycan type A3alpha l-Lys-Gly(2)-l-Ser-Gly (type A11.3). The presence of teichoic acid was determined by sequencing the N-acetyl-beta-d-mannosaminyltransferase gene tarA, which is involved in biosynthesis of ribitol teichoic acid. Menaquinone 7 (MK-7) was the predominant respiratory quinone. The G+C content of ARI 262(T) was 38.8 mol%. The isolated strains represent a novel species of the genus Staphylococcus, for which we propose the name Staphylococcus rostri sp. nov. The type strain is ARI 262(T) (=DSM 21968(T) =CCUG 57266(T)) and strain ARI 602 (=DSM 21969 =CCUG 57267) is a reference strain.
Resumo:
Streptococcus spp. and related bacteria form a large group of organisms which are associated with bovine intramammary Infections (IMI). Some of them are the well-known mastitis pathogens Streptococcus uberis and Streptococcus agalactiae. In addition, there are a considerable number of these gram-positive, catalase-negative cocci (PNC) with unclear mastitic pathogenicity such as Aerococcus viridans which make the conventional diagnostics of PNC difficult. One diagnostic, API 20 Strep (API, Biomerieux) is recommended which, as a phenotypic assay, involves a series of miniaturized biochemical tests. Recently, preference is given to genotypic identification methods. In particular, sequencing of the 16S rRNA gene allows highly reproducible and accurate identification of bacteria and permits discovery of novel, clinically relevant bacteria. As a consequence, the aim of the present study was to compare identification of IMI-associated PNC by the API method as well as by sequencing of their 16S rRNA gene (16S). Furthermore, the correlation of these bacteria to bovine chronic mastitis and their phylogeny was investigated. 102 PNC isolated from single quarter milk samples were identified by API and 16S sequencing. Considering Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae and Streptococcus agalactiae, both methods generated fully concordant results. In contrast, a very high disconcordance was observed for most of the other PNC, in particular Enterococcus spp., Aerococcus viridans and the viridans streptococci were shown as apathogenic. Lactococcus garvieae was found to be an opportunistic pathogen causing IMI during late lactation. In addition, PNC isolated from milk were frequently observed together with other bacteria, in particular with Staphylococcus spp. In these cases, the levels of somatic cell counts (SCC) were determined by the specific PNC present in the sample. Considering PNC phylogeny based on 16S sequencing, 3 major clusters were observed. They included all the common mastitis pathogens (cluster I), the Lactococcus spp., Enterococcus spp. and Aerococcus spp. (cluster II) and all the viridans streptococci (cluster III).
Resumo:
The genus Campylobacter comprises 17 species, some of which are important animal and human pathogens. To gain more insight into the genetic relatedness of this genus and to improve the molecular tools available for diagnosis, a universal sequencing approach was established for the gene encoding the beta-subunit of RNA polymerase (rpoB) for the genus Campylobacter. A total of 59 strains, including the type strains of currently recognized species as well as field isolates, were investigated in the study. A primer set specific for Campylobacter species enabled straightforward amplification and sequencing of a 530 bp fragment of the rpoB gene. The 16S rRNA gene sequences of all of the strains were determined in parallel. A good congruence was obtained between 16S rRNA and rpoB gene sequence-based trees within the genus Campylobacter. The branching of the rpoB tree was similar to that of the 16S rRNA gene tree, even though a few discrepancies were observed for certain species. The resolution of the rpoB gene within the genus Campylobacter was generally much higher than that of the 16S rRNA gene sequence, resulting in a clear separation of most species and even some subspecies. The universally applicable amplification and sequencing approach for partial rpoB gene sequence determination provides a powerful tool for DNA sequence-based discrimination of Campylobacter species.
Resumo:
Genome predictions based on selected genes would be a very welcome approach for taxonomic studies, including DNA-DNA similarity, G+C content and representative phylogeny of bacteria. At present, DNA-DNA hybridizations are still considered the gold standard in species descriptions. However, this method is time-consuming and troublesome, and datasets can vary significantly between experiments as well as between laboratories. For the same reasons, full matrix hybridizations are rarely performed, weakening the significance of the results obtained. The authors established a universal sequencing approach for the three genes recN, rpoA and thdF for the Pasteurellaceae, and determined if the sequences could be used for predicting DNA-DNA relatedness within the family. The sequence-based similarity values calculated using a previously published formula proved most useful for species and genus separation, indicating that this method provides better resolution and no experimental variation compared to hybridization. By this method, cross-comparisons within the family over species and genus borders easily become possible. The three genes also serve as an indicator of the genome G+C content of a species. A mean divergence of around 1 % was observed from the classical method, which in itself has poor reproducibility. Finally, the three genes can be used alone or in combination with already-established 16S rRNA, rpoB and infB gene-sequencing strategies in a multisequence-based phylogeny for the family Pasteurellaceae. It is proposed to use the three sequences as a taxonomic tool, replacing DNA-DNA hybridization.
Resumo:
Principles and guidelines are presented to ensure a solid scientific standard of papers dealing with the taxonomy of taxa of Pasteurellaceae Pohl 1981. The classification of the Pasteurellaceae is in principle based on a polyphasic approach. DNA sequencing of certain genes is very important for defining the borders of a taxon. However, the characteristics that are common to all members of the taxon and which might be helpful for separating it from related taxa must also be identified. Descriptions have to be based on as many strains as possible (inclusion of at least five strains is highly desirable), representing different sources with respect to geography and ecology, to allow proper characterization both phenotypically and genotypically, to establish the extent of diversity of the cluster to be named. A genus must be monophyletic based on 16S rRNA gene sequence-based phylogenetic analysis. Only in very rare cases is it acceptable that monophyly can not be achieved by 16S rRNA gene sequence comparison. Recently, the monophyly of genera has been confirmed by sequence comparison of housekeeping genes. In principle, a new genus should be recognized by a distinct phenotype, and characters that separate the new genus from its neighbours should be given clearly. Due to the overall importance of accurate classification of species, at least two genotypic methods are needed to show coherence and for separation at the species level. The main criterion for the classification of a novel species is that it forms a monophyletic group based on 16S rRNA gene sequence-based phylogenetic analysis. However, some groups might also include closely related species. In these cases, more sensitive tools for genetic recognition of species should be applied, such as DNA-DNA hybridizations. The comparison of housekeeping gene sequences has recently been used for genotypic definition of species. In order to separate species, phenotypic characters must also be identified to recognize them, and at least two phenotypic differences from existing species should be identified if possible. We recommend the use of the subspecies category only for subgroups associated with disease or similar biological characteristics. At the subspecies level, the genotypic groups must always be nested within the boundaries of an existing species. Phenotypic cohesion must be documented at the subspecies level and separation between subspecies and related species must be fully documented, as well as association with particular disease and host. An overview of methods previously used to characterize isolates of the Pasteurellaceae has been given. Genotypic and phenotypic methods are separated in relation to tests for investigating diversity and cohesion and to separate taxa at the level of genus as well as species and subspecies.
Resumo:
BACKGROUND/AIMS: Nutritional supplements are widely used. Recently, liver injury after consumption of Herbalife preparations was reported but the underlying pathogenesis remained cryptic. METHODS: Two patients presented with cholestatic hepatitis and pruritus, and cirrhosis, respectively. Viral, alcoholic, metabolic, autoimmune, neoplastic, vascular liver diseases and synthetic drugs as the precipitating causes of liver injury were excluded. However, both patients reported long-term consumption of Herbalife products. All Herbalife products were tested for contamination with drugs, pesticides, heavy metals, and softeners, and examined for microbial contamination according to standard laboratory procedures. Bacteria isolated from the samples were identified as Bacillus subtilis by sequencing the 16S rRNA and gyrB genes. RESULTS: Causality between consumption of Herbalife products and disease according to CIOMS was scored "probable" in both cases. Histology showed cholestatic and lobular/portal hepatitis with cirrhosis in one patient, and biliary fibrosis with ductopenia in the other. No contamination with chemicals or heavy metals was detected, and immunological testing showed no drug hypersensitivity. However, samples of Herbalife products ingested by both patients showed growth of Bacillus subtilis of which culture supernatants showed dose- and time-dependent hepatotoxicity. CONCLUSIONS: Two novel incidents of severe hepatic injury following intake of Herbalife products contaminated with Bacillus subtilis emphasize its potential hepatotoxicity.
Resumo:
This investigation was based on 23 isolates from several European countries collected over the past 30 years, and included characterization of all isolates. Published data on amplified fragment length polymorphism typing of isolates representing all biovars as well as protein profiles were used to select strains that were then further characterized by polyamine profiling and sequencing of 16S rRNA, infB, rpoB and recN genes. Comparison of 16S rRNA gene sequences revealed a monophyletic group within the avian 16S rRNA group of the Pasteurellaceae, which currently includes the genera Avibacterium, Gallibacterium and Volucribacter. Five monophyletic subgroups related to Gallibacterium anatis were recognized by 16S rRNA, rpoB, infB and recN gene sequence comparisons. Whole-genome similarity between strains of the five subgroups and the type strain of G. anatis calculated from recN sequences allowed us to classify them within the genus Gallibacterium. In addition, phenotypic data including biochemical traits, protein profiling and polyamine patterns clearly indicated that these taxa are related. Major phenotypic diversity was observed for 16S rRNA gene sequence groups. Furthermore, comparison of whole-genome similarities, phenotypic data and published data on amplified fragment length polymorphism and protein profiling revealed that each of the five groups present unique properties that allow the proposal of three novel species of Gallibacterium, for which we propose the names Gallibacterium melopsittaci sp. nov. (type strain F450(T) =CCUG 36331(T) =CCM 7538(T)), Gallibacterium trehalosifermentans sp. nov. (type strain 52/S3/90(T) =CCUG 55631(T) =CCM 7539(T)) and Gallibacterium salpingitidis sp. nov. (type strain F150(T) =CCUG 15564(T) =CCUG 36325(T) =NCTC 11414(T)), a novel genomospecies 3 of Gallibacterium and an unnamed taxon (group V). An emended description of the genus Gallibacterium is also presented.
Resumo:
Gram-negative, aerobic, motile, rod-shaped bacteria were isolated from the intestines of freshwater fish on two separate occasions. Colonies of both strains, JF3835(T) and JF4413, produced non-diffusible green pigment following 4-5 days incubation on Luria-Bertani agar. The most abundant fatty acids were summed feature 3 (comprising C(16 : 1)ω7c and/or C(15 : 0) iso 2-OH), C(16 : 0) and C(18 : 1)ω7c. The DNA G+C content was 62.9 mol%. Sequence analysis of the 16S rRNA gene indicated 100 % sequence similarity between the two strains. In comparison with recognized species, the new strains exhibited the greatest degree of sequence similarity with members of the Pseudomonas chlororaphis subspecies: P. chlororaphis subsp. chlororaphis (99.84 %), P. chlororaphis subsp. aurantiaca (99.75 %) and P. chlororaphis subsp. aureofaciens (99.40 %). While DNA-DNA relatedness confirmed the placement of strains JF3835(T) and JF4413 as members of the species P. chlororaphis, multilocus sequencing indicated that the strains formed a distinct cluster within it. On the basis of genotypic and phenotypic evidence, strains JF3835(T) and JF4413 represent a novel subspecies of the species P. chlororaphis, for which the name Pseudomonas chlororaphis subsp. piscium subsp. nov. is proposed. The type strain is JF3835(T) (=NCIMB 14478(T)=DSM 21509(T)).
Resumo:
We present an optimized multilocus sequence typing (MLST) scheme with universal primer sets for amplifying and sequencing the seven target genes of Campylobacter jejuni and Campylobacter coli. Typing was expanded by sequence determination of the genes flaA and flaB using optimized primer sets. This approach is compatible with the MLST and flaA schemes used in the PubMLST database and results in an additional typing method using the flaB gene sequence. An identification module based on the 16S rRNA and rpoB genes was included, as well as the genetic determination of macrolide and quinolone resistances based on mutations in the 23S rRNA and gyrA genes. Experimental procedures were simplified by multiplex PCR of the 13 target genes. This comprehensive approach was evaluated with C. jejuni and C. coli isolates collected in Switzerland. MLST of 329 strains resulted in 72 sequence types (STs) among the 186 C. jejuni strains and 39 STs for the 143 C. coli isolates. Fourteen (19%) of the C. jejuni and 20 (51%) of the C. coli STs had not been found previously. In total, 35% of the C. coli strains collected in Switzerland contained mutations conferring antibiotic resistance only to quinolone, 15% contained mutations conferring resistance only to macrolides, and 6% contained mutations conferring resistance to both classes of antibiotics. In C. jejuni, these values were 31% and 0% for quinolone and macrolide resistance, respectively. The rpoB sequence allowed phylogenetic differentiation between C. coli and C. jejuni, which was not possible by 16S rRNA gene analysis. An online Integrated Database Network System (SmartGene, Zug, Switzerland)-based platform for MLST data analysis specific to Campylobacter was implemented. This Web-based platform allowed automated allele and ST designation, as well as epidemiological analysis of data, thus streamlining and facilitating the analysis workflow. Data networking facilitates the exchange of information between collaborating centers. The described approach simplifies and improves the genotyping of Campylobacter, allowing cost- and time-efficient routine monitoring.
Resumo:
Gram-negative, nonmotile bacteria that are catalase, oxidase, and urease positive are regularly isolated from the airways of horses with clinical signs of respiratory disease. On the basis of the findings by a polyphasic approach, we propose that these strains be classified as Nicoletella semolina gen. nov, sp. nov., a new member of the family Pasteurellaceae. N. semolina reduces nitrate to nitrite but is otherwise biochemically inert; this includes the lack of an ability to ferment glucose and other sugars. Growth is fastidious, and the isolates have a distinctive colony morphology, with the colonies being dry and waxy and looking like a semolina particle that can be moved around on an agar plate without losing their shape. DNA-DNA hybridization data and multilocus phylogenetic analysis, including 16S rRNA gene (rDNA), rpoB, and infB sequencing, clearly placed N. semolina as a new genus in the family Pasteurellaceae. In all the phylogenetic trees constructed, N. semolina is on a distinct branch displaying approximately 5% 16S rDNA, approximately 16% rpoB, and approximately 20% infB sequence divergence from its nearest relative within the family Pasteurellaceae. High degrees of conservation of the 16S rDNA (99.8%), rpoB (99.6%), and infB (99.7%) sequences exist within the species, indicating that N. semolina isolates not only are phenotypically homogeneous but also are genetically homogeneous. The type strain of N. semolina is CCUG43639(T) (DSM16380(T)).