989 resultados para 121-757C
Resumo:
Oxygen and carbon isotopic records have been developed for the Cenozoic carbonate oozes of Sites 752, 754, 756, and 757 based on the analysis of monospecific benthic foraminifers. The intent of this report is to provide a basic isotopic stratigraphy for use in other paleoceanographic studies. The oxygen isotope record displays the enrichments associated with cooling or ice volume buildup at the Eocene/Oligocene boundary, in the middle Miocene, and in the upper Pliocene. The carbon isotopic record contains the Chron 16 enrichment in the lower Miocene and the Chron 6 depletion in the uppermost Miocene.
Resumo:
The present study involves the analysis and interpretation of geochemical data from a suite of sediment samples recovered at ODP Hole 752A. The samples encompass the time period that includes the lithospheric extension and uplift of Broken Ridge, and they record deposition below and above the mid-Eocene angular unconformity that denotes this uplift. A Q-mode factor analysis of the geochemical data indicates that the sediments in this section are composed of a mixture of three geochemical end members that collectively account for 94.2% of the total variance in the data. An examination of interelement ratios for each of these end members suggests that they represent the following sedimentary components: (1) a biogenic component, (2) a volcanogenic component, and (3) a hydrothermal component. The flux of the biogenic component decreases almost thirtyfold across the Eocene unconformity. This drastic reduction in the deposition of biogenic materials corresponds to the almost complete disappearance of chert layers, diatoms, and siliceous microfossils and is coincident with the uplift of Broken Ridge. The volcanogenic component is similar in composition to Santonian ash recovered at Hole 755A on Broken Ridge and is the apparent source of the Fe-stained sediment that immediately overlies the angular unconformity. This finding suggests that significant amounts of Santonian ash were subaerially exposed, weathered, and redeposited and is consistent with data that suggest that the vertical uplift of Broken Ridge was both rapid and extensive. The greatest flux of hydrothermal materials is recorded in the sediments immediately below the angular unconformity. This implies that the uplift of Broken Ridge was preceded by a significant amount of rifting, during which faulting and fracturing of the lithosphere led to enhanced hydrothermal circulation. This time sequence of events is consistent with (but not necessarily diagnostic of) the passive model of lithospheric extension and uplift.