972 resultados para 111-678A
Resumo:
Für die Entwicklung photoschaltbarer selbstorganisierter Monoschichten (SAMs) auf Gold(111)-Oberflächen wurden neue Azobenzol-terminierte Asparagussäure - und Liponsäurederivate synthetisiert. Um den Einfluss lateraler Wasserstoffbrückenbindungen auf Qualität und Orientierungsordnung der Schichten zu untersuchen, wurden Monolagen, die durch amid- und esterverknüpfte Verbindungen gebildet wurden, miteinander verglichen. Die Filmbildung aus der Lösung wurde in situ durch optische Frequenzverdopplung (SHG) untersucht und die Photoreaktivität mittels Kontaktwinkelmessungen, Oberflächen-Plasmonenresonanz (SPR) und Ellipsometrie verfolgt. SAMs auf Gold wurden außerdem mit Hilfe von Röntgenphotoelektronenspektroskopie (XPS), Nahkanten-Reflexions-Röntgenabsorptionsspektroskopie (NEXAFS) und Infrarot-Reflexionsabsorptionsspektroskopie (IRRAS) charakterisiert, um die Filmqualität, die Bindung ans Substrat und Orientierungsordnung im Film zu ermitteln. Da die Chemisorption auf polykristallinem Gold formal der Koordinationschemie von 1,2-Dithiolan-Derivaten gegenüber nullwertigen Edelmetall-Zentralatomen entspricht, wurden etliche Pt-Komplexe durch oxidative Addition an [Pt(PPh3)4] dargestellt. Im Zusammenhang mit der Darstellung der Asparagussäure wurde die Kristallstruktur von [pipH]2[WS4] und der neuen Verbindungen [pipH]3[WS4](HS) und [pipH]4[WS4][WOS3] (pip = Piperidin) bestimmt. Wasserstoffbrückenbindungen zwischen den Piperidinium-Kationen und den Thiowolframat-Anionen spielen eine dominante strukturelle Rolle.
Resumo:
The chemical properties of element 111, eka-gold, are predicted through the use of the periodic table, relativistic Hartee-Fock-Slater calculations, and various qualitative theories which have established their usefulness in understanding and correlating properties of molecules. The results indicate that element 111 will be like Au(III) in its chemistry with little or no tendency to show stability in the I or II states. There is a possibility that the 111 - ion, analogous to the auride ion, will be stable.
Resumo:
The periodic silane burst technique was employed during metalorganic chemical vapor deposition of epitaxial GaN on AlN buffer layers grown on Si (111). Periodic silicon delta doping during growth of both the AlN and GaN layers led to growth of GaN films with decreased tensile stresses and decreased threading dislocation densities, as well as films with improved quality as indicated by x-ray diffraction, micro-Raman spectroscopy, atomic force microscopy, and transmission electron microscopy. The possible mechanism of the reduction of tensile stress and the dislocation density is discussed in the paper.
Resumo:
A modo de gu??a de lectura se presenta una selecci??n de t??tulos de novelas cuya acci??n transcurre de manera evidente en alg??n pa??s del mundo o en alguna regi??n espa??ola. As?? pues, tienen como tema central los viajes. Las rese??as incluidas en el texto van digidas a dos p??blicos diferentes: estudiantes desde cuarto de la ESO hasta la universidad y personas adultas, al margen de su nivel de estudios. Est??n organizadas por pa??ses e indican el nivel o dificultad de la lectura.
Resumo:
Calculations are reported of the magnetic anisotropy energy of two-dimensional (2D) Co nanostructures on a Pt(111) substrate. The perpendicular magnetic anisotropy (PMA) of the 2D Co clusters strongly depends on their size and shape, and rapidly decreases with increasing cluster size. The PMA calculated is in reasonable agreement with experimental results. The sensitivity of the results to the Co-Pt spacing at the interface is also investigated and, in particular, for a complete Co monolayer we note that the value of the spacing at the interface determines whether PMA or in-plane anisotropy occurs. We find that the PMA can be greatly enhanced by the addition of Pt adatoms to the top surface of the 2D Co clusters. A single Pt atom can induce in excess of 5 meV to the anisotropy energy of a cluster. In the absence of the Pt adatoms the PMA of the Co clusters falls below 1 meV/Co atom for clusters of about 10 atoms whereas, with Pt atoms added to the surface of the clusters, a PMA of 1 meV/Co atom can be maintained for clusters as large as about 40 atoms. The effect of placing Os atoms on the top of the Co clusters is also considered. The addition of 5d atoms and clusters on the top of ferromagnetic nanoparticles may provide an approach to tune the magnetic anisotropy and moment separately.
Resumo:
Temperature-programmed reaction measurements supported by scanning tunneling microscopy have shown that phenylacetylene and iodobenzene react on smooth Au(111) under vacuum conditions to yield biphenyl and diphenyldiacetylene, the result of homocoupling of the reactant molecules. They also produce diphenylacetylene, the result of Sonogashira cross-coupling, prototypical of a class of reactions that are of paramount importance in synthetic organic chemistry and whose mechanism remains controversial. Roughened Au(111) is completely inert toward all three reactions, indicating that the availability of crystallographically well-defined adsorption sites is crucially important. High-resolution X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy show that the reactants are initially present as intact, essentially flat-lying molecules and that the temperature threshold for Sonogashira coupling coincides with that for C−I bond scission in the iodobenzene reactant. The fractional-order kinetics and low temperature associated with desorption of the Sonogashira product suggest that the reaction occurs at the boundaries of islands of adsorbed reactants and that its appearance in the gas phase is rate-limited by the surface reaction. These findings demonstrate unambiguously and for the first time that this heterogeneous cross-coupling chemistry is an intrinsic property of extended, metallic pure gold surfaces: no other species, including solvent molecules, basic or charged (ionic) species are necessary to mediate the process.
Resumo:
The surface structure of BaO(111) has been determined using STM and computer modelling. The BaO(111) surface was prepared in thin film form on Pt(111) and presents a surface with twice the lattice parameter expected for that of the bulk termination, i.e. a (2 x 2) reconstruction. Computer modelling indicates that the bulk termination is unstable, but that the (2 x 2) reconstructed BaO(111) surface has a low surface energy and is hence a stable surface reconstruction. The (2 x 2) reconstruction consists of small, three-sided pyramids with (100) oriented sides and either oxygen or barium ions at the apices. Less regular surface reconstructions containing the same pyramids are almost equally stable, indicating that we may also expect less regular regions to appear with a fairly random distribution of these surface species. The simulations further suggest that a regular (4 x 4) reconstruction built up of bigger pyramids is even more energetically favourable, and some evidence is found for such a structure in the STM. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The adsorption and hydrogenation of acrolein on the Ag(111) surface has been investigated by high resolution synchrotron XPS, NEXAFS, and temperature programmed reaction. The molecule adsorbs intact at all coverages and its adsorption geometry is critically important in determining chemoselectivity toward the formation of allyl alcohol, the desired but thermodynamically disfavored product. In the absence of hydrogen adatoms (H(a)), acrolein lies almost parallel to the metal surface; high coverages force the C=C bond to tilt markedly, likely rendering it less vulnerable toward reaction with hydrogen adatoms. Reaction with coadsorbed H(a) yields allyl alcohol, propionaldehyde, and propanol, consistent with the behavior of practical dispersed Ag catalysts operated at atmospheric pressure: formation of all three hydrogenation products is surface reaction rate limited. Overall chemoselectivity is strongly influenced by secondary reactions of allyl alcohol. At low H(a) coverages, the C=C bond in the newly formed allyl alcohol molecule is strongly tilted with respect to the surface, rendering it immune to attack by H(a) and leading to desorption of the unsaturated alcohol. In contrast with this, at high H(a) coverages, the C=C bond in allyl alcohol lies almost parallel to the surface, undergoes hydrogenation by H(a), and the saturated alcohol (propanol) desorbs.
Resumo:
The chemical composition and dissociation behaviour of water adsorbed on clean and oxygen pre-covered Pd{111} was studied using high-resolution time-resolved and temperature-programmed X-ray photoelectron spectroscopy. We find that water remains intact at all temperatures up to desorption on the clean surface and at high oxygen coverage(0.69 ML) when a surface oxide is formed. The highest desorption peaks occur at 163 K from the clean surface and at 172 K from the surface oxide. At the intermediate coverage of 0.20 ML oxygen reacts with coadsorbed water at 155 K, to generate a mixed H2O/OH layer exhibiting a (root 3- x root 3)R30 degrees diffraction pattern, which is stable up to 177 K. The measured ratio between intact water and the hydroxyl species in this layer varies between 1.5 and 2 depending on temperature. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The adsorption of water and coadsorption with oxygen on Rh{111} under ultrahigh vacuum conditions was studied using synchrotron-based photoemission and photoabsorption spectroscopy. Water adsorbs intact on the clean surface at temperatures below 154 K. Irradiation with x-rays, however, induces fast dissociation and the formation of a mixed OH+H(2)O layer indicating that the partially dissociated layer is thermodynamically more stable. Coadsorption of water and oxygen at a coverage below 0.3 monolayers has a similar effect, leading to the formation of a hydrogen-bonded network of water and hydroxyl molecules at a ratio of 3:2. The partially dissociated layers are more stable than chemisorbed intact water with the maximum desorption temperatures up to 30 K higher. For higher oxygen coverage, up to 0.5 monolayers, water does not dissociate and an intact water species is observed above 160 K, which is characterized by an O 1s binding energy 0.6 eV higher than that of chemisorbed water and a high desorption temperature similar to the partially dissociated layer. The extra stabilization is most likely due to hydrogen bonds with atomic oxygen.
Experimental structure determination of the chemisorbed overlayers of chlorine and iodine on Au{111}
Resumo:
We have performed an experimental structure determination of the ordered p(sqrt[3] x sqrt[3])R30 degrees structures of chlorine and iodine on Au{111} using low-energy electron diffraction (LEED). Despite great similarities in the structure of the underlying substrate, which shows only minor deviations from the bulk positions in both cases, chlorine and iodine are found to adsorb in different adsorption sites, fcc and hcp hollow sites, respectively. The experimental Au-Cl and Au-I bond lengths of 2.56 and 2.84 A are close to the sums of the covalent radii, supporting the view that the bond is essentially covalent in nature; however, they are significantly shorter than predicted theoretically.
Resumo:
Two different ways of performing low-energy electron diffraction (LEED) structure determinations for the p(2 x 2) structure of oxygen on Ni {111} are compared: a conventional LEED-IV structure analysis using integer and fractional-order IV-curves collected at normal incidence and an analysis using only integer-order IV-curves collected at three different angles of incidence. A clear discrimination between different adsorption sites can be achieved by the latter approach as well as the first and the best fit structures of both analyses are within each other's error bars (all less than 0.1 angstrom). The conventional analysis is more sensitive to the adsorbate coordinates and lateral parameters of the substrate atoms whereas the integer-order-based analysis is more sensitive to the vertical coordinates of substrate atoms. Adsorbate-related contributions to the intensities of integer-order diffraction spots are independent of the state of long-range order in the adsorbate layer. These results show, therefore, that for lattice-gas disordered adsorbate layers, for which only integer-order spots are observed, similar accuracy and reliability can be achieved as for ordered adsorbate layers, provided the data set is large enough.