932 resultados para 080404 Markup Languages
Resumo:
In this paper we introduce a class of descriptors for regular languages arising from an application of the Stone duality between finite Boolean algebras and finite sets. These descriptors, called classical fortresses, are object specified in classical propositional logic and capable to accept exactly regular languages. To prove this, we show that the languages accepted by classical fortresses and deterministic finite automata coincide. Classical fortresses, besides being propositional descriptors for regular languages, also turn out to be an efficient tool for providing alternative and intuitive proofs for the closure properties of regular languages.
Resumo:
Dynamically typed languages lack information about the types of variables in the source code. Developers care about this information as it supports program comprehension. Ba- sic type inference techniques are helpful, but may yield many false positives or negatives. We propose to mine information from the software ecosys- tem on how frequently given types are inferred unambigu- ously to improve the quality of type inference for a single system. This paper presents an approach to augment existing type inference techniques by supplementing the informa- tion available in the source code of a project with data from other projects written in the same language. For all available projects, we track how often messages are sent to instance variables throughout the source code. Predictions for the type of a variable are made based on the messages sent to it. The evaluation of a proof-of-concept prototype shows that this approach works well for types that are sufficiently popular, like those from the standard librarie, and tends to create false positives for unpopular or domain specific types. The false positives are, in most cases, fairly easily identifiable. Also, the evaluation data shows a substantial increase in the number of correctly inferred types when compared to the non-augmented type inference.
Resumo:
Previous research has demonstrated that adults are successful at visually tracking rigidly moving items, but experience great difficulties when tracking substance-like ‘‘pouring’’ items. Using a comparative approach, we investigated whether the presence/absence of the grammatical count–mass distinction influences adults and children’s ability to attentively track objects versus substances. More specifically, we aimed to explore whether the higher success at tracking rigid over substance-like items appears universally or whether speakers of classifier languages (like Japanese, not marking the object–substance distinction) are advantaged at tracking substances as compared to speakers of non-classifier languages (like Swiss German, marking the object–substance distinction). Our results supported the idea that language has no effect on low-level cognitive processes such as the attentive visual processing of objects and substances. We concluded arguing that the tendency to prioritize objects is universal and independent of specific characteristics of the language spoken.
Resumo:
Native languages of the Americas whose predicate and clause structure reflect nominal hierarchies show an interesting range of structural diversity not only with respect to morphological makeup of their predicates and arguments but also with respect to the factors governing obviation status. The present article maps part of such diversity. The sample surveyed here includes languages with some sort of nonlocal (third person acting on third person) direction-marking system.
Resumo:
In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.