267 resultados para xylem
Resumo:
Root cortical and stelar protoplasts were isolated from maize (Zea mays L.) plants that were either well watered or water stressed, and the patch-clamp technique was used to investigate their plasma membrane K+ channel activity. In the root cortex water stress did not significantly affect inward- or outward-rectifying K+ conductances relative to those observed in well-watered plants. In contrast, water stress significantly reduced the magnitude of the outward-rectifying K+ current in the root stele but had little effect on the inward-rectifying K+ current. Pretreating well-watered plants with abscisic acid also significantly affected K+ currents in a way that was consistent with abscisic acid mediating, at least in part, the response of roots to water stress. It is proposed that the K+ channels underlying the K+ currents in the root stelar cells represent pathways that allow K+ exchange between the root symplasm and xylem apoplast. It is suggested that the regulation of K+ channel activity in the root in response to water stress could be part of an important adaptation of the plant to survive drying soils.
Resumo:
A qualidade, eficácia e segurança no emprego de drogas vegetais dependem, entre outras questões, de sua qualidade sanitária. Sua origem e manuseio, em condições no geral inadequadas, propiciam biocarga elevada e abrangente, o que implica riscos para saúde. O presente trabalho objetivou conhecimento da microbiota das plantas estudadas e o desenvolvimento de estudos de sua descontaminação por plasma, tendo-se analisado os parâmetros físicos que influenciaram este processo. O projeto possibilitou a descontaminação de drogas vegetais com alta carga microbiana. Estudou-se a alcachofra (Cynara scolymus L.), camomila (Chamomilla recutita (L.) Rauschert.), ginco (Ginkgo biloba L.) e guaraná (Paullinia cupana Kunth), adotando parâmetros de processo que alegadamente permitem a integridade dos princípios ativos termossensíveis. Para isso, foi empregado reator disponível no Laboratório de Sistemas Integráveis, pertecente à Escola Politécnica da Universidade de São Paulo, em sistema com acoplamento capacitivo modo RIE (Reactive Ion Etching). Neste sistema, trabalhou-se com oxigênio adicionado de peróxido de hidrogênio. Todos os processos de descontaminação foram desenvolvidos a temperatura ambiente, sob diferentes parâmetros físicos complementares. A eficácia do processo foi investigada, empregando-se contagem de microrganismos heterotróficos, assim como pesquisa de indicadores de patogênicos (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp, Escherichia coli). As avaliações microbiológicas, quantitativas e qualitativas, assim como os estudos decorrentes dos dados obtidos, foram desenvolvidos no Laboratório de Controle Biológico da Faculdade de Ciências Farmacêuticas - USP. Os resultados obtidos após a descontaminação por plasma de oxigênio (100%), a potência de 150 W, evidenciaram redução de até 4 ciclos de aeróbicos totais. No processo por plasma peróxido de hidrogênio (20%) e oxigênio (80%), a uma potência de 150 W, observou-se a redução de até 4 ciclos log de aeróbios totais para as drogas vegetais deste estudo. A presença de substâncias químicas complexas da camomila, que contêm óleo volátil, flavonóides, aminoácidos, ácidos graxos, sais minerais, cumarinas, mucilagens e ácidos orgânicos, interferem no processo por plasma provavelmente em decorrência de a mucilagem formar um filme protetor, impedindo a difusão gasosa em ambos os processos por plasma. Assim, não só a camomila mas também o guaraná, com biocargas iniciais respectivamente de 6,6x106 UFC/g e 2,7x106 UFC/g, mantiveram-se com níveis de contaminação da mesma ordem de grandeza, após os desafios com plasma. A contagem bacteriana da alcachofra (fornecedor B), que foi submetida ao processo de descontaminação através do plasma O2 (100%), (potência de 150 W, pressão de 100 mTorr e vazão de 200 sccm), sofreu redução de dez vezes, independentemente do tempo do processo. Possivelmente este resultado, que aparenta inconsistência, decorre da ação apenas superficial do plasma. A descontaminação por processo de plasma de oxigênio e de peróxido de hidrogênio para a alcachofra (fornecedor B) não foi eficaz, devido à predominância de elementos lignificados. As amostras de alcachofra (fornecedor C), com baixa percentagem de vasos de xilema lignificados e fibras lignificadas evidenciaram a maior eficácia do processo por plasma, pois possibilitou grande difusão gasosa sobre as amostras. O estudo permitiu ainda concluir que à aplicabilidade do plasma na descontaminação de drogas vegetais depende da resistência dos microrganismos, mas igualmente das características da planta, sejam aquelas de natureza morfoanatômica, enzimática ou química. Estudos específicos devem ser desenvolvidos para cada situação.
Resumo:
Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees to adverse environmental conditions. The demonstrated relationship of MR formation to ECE across this dendrochronological network in the Mediterranean basin shows the potential of MR analysis to reconstruct the history of past climatic extremes and to predict future forest dynamics in a changing climate.
Resumo:
Amino acids are transported between different organs through both xylem and phloem. This redistribution of nitrogen and carbon requires the activity of amino acid transporters in the plasma membrane. In addition, amino acids can be taken up directly by the roots. Amino acid transport has been well characterized in the yeast Saccharomyces cerevisiae, and functional complementation has served as an excellent tool for identifying and characterizing amino acid transporters from plants. The transporters from yeast and plants are related and can be grouped into two large superfamilies. Based on substrate specificity and affinity, as well as expression patterns in plants, different functions have been assigned to some of the individual transporters. Plant mutants for amino acid transporter genes are now being used to study the physiological functions of many of the cloned genes.
Resumo:
Long distance transport of amino acids is mediated by several families of differentially expressed amino acid transporters. The two genes AAP1 and AAP2 encode broad specificity H+-amino acid co-transporters and are expressed to high levels in siliques of Arabidopsis, indicating a potential role in supplying the seeds with organic nitrogen. The expression of both genes is developmentally controlled and is strongly induced in siliques at heart stage of embryogenesis, shortly before induction of storage protein genes. Histochemical analysis of transgenic plants expressing promoter-GUS fusions shows that the genes have non-overlapping expression patterns in siliques. AAP1 is expressed in the endosperm and the cotyledons whereas AAP2 is expressed in the vascular strands of siliques and in funiculi. The endosperm expression of AAP1 during early stages of seed development indicates that the endosperm serves as a transient storage tissue for organic nitrogen. Amino acids are transported in both xylem and phloem but during seed filling are imported only via the phloem. AAP2, which is expressed in the phloem of stems and in the veins supplying seeds, may function in uptake of amino acids assimilated in the green silique tissue, in the retrieval of amino acids leaking passively out of the phloem and in xylem-to-phloem transfer along the path. The promoters provide excellent tools to study developmental, hormonal and metabolic control of nitrogen nutrition during development and may help to manipulate the timing and composition of amino acid import into seeds.
Resumo:
Abscisic acid (ABA) supplied in the vase solution can induce stomatal closure in the leaves of cut flowers, including roses (Rosa hybrida L.). This effect may be beneficial in reducing water deficit stress. Extracellular pH can affect active ABA concentrations in the apoplast of guard cells, with sap alkalisation enhancing the physiological activity of ABA. Accordingly, it was hypothesized that vase solution pH may affect ABA-mediated stomatal closure of cut roses. Two experiments were conducted to study the interaction of vase solution pH and ABA. In the first, cut 'Baccara' roses were held in vase solutions with +/- 10(-5) M ABA at pH 6, pH 7 and pH 8. In the second experiment, roses were held with +/- 10(-5) M ABA at pH 6 and pH 8 in the presence and absence of 1 mg l(-1) AgNO3 as a bactericide. Supply of ABA increased vase life and reduced vase solution usage of flowers held in low pH 6 solutions, indicating induction of stomatal closure. Conversely, ABA supplied at pH 8 was associated with reduced vase life. This negative result was associated with enhanced development of vase solution microbes at high pH, which overrode any potential pH-mediated ABA efficacy effects.
Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia
Resumo:
Coral cays form part of the Australian Great Barrier Reef. Coral cays with high densities of seabirds are areas of extreme nitrogen (N) enrichment with deposition rates of up to 1000 kg N ha(-1) y(-1). The ways in which N sources are utilised by coral cay plants, N is distributed within the cay, and whether or not seabird-derived N moves from cay to surrounding marine environments were investigated. We used N metabolite analysis, N-15 labelling and N-15 natural abundance (delta(15)N) techniques. Deposited guano-derived uric acid is hydrolysed to ammonium (NH4+) and gaseous ammonia (NH3). Ammonium undergoes nitrification, and nitrate (NO3-) and NH4+ were the main forms of soluble N in the soil. Plants from seabird rookeries have a high capacity to take up and assimilate NH4+, are able to metabolise uric acid, but have low rates of NO3- uptake and assimilation. We concluded that NH4+ is the principal source of N for plants growing at seabird rookeries, and that the presence of NH4+ in soil and gaseous NH3 in the atmosphere inhibits assimilation of NO3-, although NO3- is taken up and stored. Seabird guano, Pisonia forest soil and vegetation were similarly enriched in N-15 suggesting that the isotopic enrichment of guano (delta(15)N 9.9parts per thousand) carries through the forest ecosystem. Soil and plants from woodland and beach environments had lower delta(15)N (average 6.5parts per thousand) indicating a lower contribution of bird-derived N to the N nutrition of plants at these sites. The aquifer under the cay receives seabird-derived N leached from the cay and has high concentrations of N-15-enriched NO3- (delta(15)N 7.9parts per thousand). Macroalgae from reefs with and without seabirds had similar delta(15)N values of 2.0-3.9parts per thousand suggesting that reef macroalgae do not utilise N-15-enriched seabird-derived N as a main source of N. At a site beyond the Heron Reef Crest, macroalgae had elevated delta(15)N of 5.2parts per thousand, possibly indicating that there are locations where macroalgae access isotopically enriched aquifer-derived N. Nitrogen relations of Heron Island vegetation are compared with other reef islands and a conceptual model is presented.
Resumo:
Silicified fragments of false-trunks of the fern, Tempskya judithae sp. nov., are described from lower Cretaceous (latest Albian) sediments near Winton, central-western Queensland. The species is characterised by a three-layered sclerenchymatous cortex and a two-layered pith of sclerenchyma cells. In possessing these characters, T judithae is more similar to T readii than to other species of Tempskya. However, the Australian species differs from T readii in the abaxial shape of the petiole xylem trace (concave in T judithae, convex in T readii) and in symmetry attributes of the leaf-bases within the false-trunk (random in T judithae and radially symmetrical in T readii). T judithae is the first record of Tempskya from Australia and the second from Gondwana; the known distribution range of the genus embraces a broad area in mid-high latitudinal regions of Laurasia and the Gondwana record now comprises Australia and Argentina. Ecological signals of plant fossil assemblages recorded from the Australian sediments are in accord with flood plain habitats and a temperate climatic regime. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fluorescence and confocal laser scanning microscopy were explored to investigate the movement and localization of mineral oils in citrus. In a laboratory experiment, fluorescence microscopy observation indicated that when a 'narrow' distillation fraction of an nC23 horticultural mineral oil was applied to adaxial and opposing abaxial leaf surfaces of potted orange [Citrus x aurantium L. (Sapindales: Rutaceae)] trees, oil penetrated steadily into treated leaves and, subsequently, moved to untreated petioles of the leaves and adjacent untreated stems. In another experiment, confocal laser scanning microscopy was used to visualize the penetration into, and the subsequent cellular distribution of, an nC24 agricultural mineral oil in C. trifoliata L. seedlings. Oil droplets penetrated or diffused into plants via both stomata and the cuticle of leaves and stems, and then moved within intercellular spaces and into various cells including phloem and xylem. Oil accumulated in droplets in intercellular spaces and within cells near the cell membrane. Oil entered cells without visibly damaging membranes or causing cell death. In a field experiment with mature orange trees, droplets of an nC23 horticultural mineral oil were observed, by fluorescence microscopy, in phloem sieve elements in spring flush growth produced 4-5 months and 16-17 months after the trees were sprayed with oil. These results suggest that movement of mineral oil in plants is both apoplastic via intercellular spaces and symplastic via plasmodesmata. The putative pattern of the translocation of mineral oil in plants and its relevance to oil-induced chronic phytotoxicity are discussed.
Resumo:
Symptoms associated with pistachio dieback in Australia include decline (little or no current season growth), xylem staining in shoots two or more years old, trunk mu and limb lesions (often covered by black, superficial fungal growth), excessive exudation of resin, dieback and death of the tree. Bacteria belonging to the genus Xanthomonas have been suggested as the causal agent. To confirm the constant association between these bacteria and the disease syndrome, the absence of other pathogens and the identity of the pathogen, we performed a series of isolations and pathogenicity tests. The only microorganism consistently isolated from diseased tissue was a bacterium that produced yellow, mucoid colonies and displayed morphological and cultural characteristics typical of the genus Xanthomonas. Database comparisons of the fatty acid and whole-cell protein profiles of five representative pistachio isolates indicated that they all belonged to X. translucens, but it was not possible to allocate the isolates to pathovar. Pathogenicity tests on cereals and grasses supported this identification. However, Koch's postulates have been only partially fulfilled because not all symptoms associated with pistachio dieback were reproduced on inoculated two-year-old pistachio trees. While discolouration was observed, dieback, excessive resinous exudate and trunk and limb lesions were not produced; expression of these symptoms may be delayed, and long-term monitoring of a small number of inoculated trees is in progress.
Resumo:
Pollen and starch residue analyses were conducted on 24 sediment samples from archaeological sites on Maloelap and Ebon Atolls in the Marshall Islands, eastern Micronesia, and Henderson and Pitcairn Islands in the Pitcairn Group, Southeast Polynesia. The sampled islands, two of which are mystery islands (Henderson and Pitcairn), previously occupied and abandoned before European contact, comprise three types of Pacific islands: low coral atolls, raised atolls, and volcanic islands. Pollen, starch grains, calcium oxylate crystals, and xylem cells of introduced non-Colocasia Araceae (aroids) were identified in the Marshalls and Henderson (ca. 1,900 yr B.P. and 1,200 yr B.P. at the earliest, respectively). The data provide direct evidence of prehistoric horticulture in those islands and initial fossil pollen sequences from Pitcairn Island. Combined with previous studies, the data also indicate a horticultural system on Henderson comprising both field and tree crops, with seven different cultigens, including at least two species of the Araceae. Starch grains and xylem cells of Ipomoea sp., possibly introduced 1. batatas, were identified in Pitcairn Island deposits dated to the last few centuries before European contact in 1790.
Resumo:
Mangrove ecosystems can be either nitrogen (N) or phosphorus (P) limited and are therefore vulnerable to nutrient pollution. Nutrient enrichment with either N or P may have differing effects on ecosystems because of underlying differences in plant physiological responses to these nutrients in either N- or P-limited settings. Using a common mangrove species, Avicennia germinans, in sites where growth was either N or P limited, we investigated differing physiological responses to N and P limitation and fertilization. We tested the hypothesis that water uptake and transport, and hydraulic architecture, were the main processes limiting productivity at the P-limited site, but that this was not the case at the N-limited site. We found that plants at the P-deficient site had lower leaf water potential, stomatal conductance and photosynthetic carbon-assimilation rates, and less conductive xylem, than those at the N-limited site. These differences were greatly reduced with P fertilization at the P-limited site. By contrast, fertilization with N at the N-limited site had little effect on either photosynthetic or hydraulic traits. We conclude that growth in N- and P-limited sites differentially affect the hydraulic pathways of mangroves. Plants experiencing P limitation appear to be water deficient and undergo more pronounced changes in structure and function with relief of nutrient deficiency than those in N-limited ecosystems.
Resumo:
Early work has shown variation in the grain yield of rice cultivars grown under water stress conditions to be associated with the plant water status, mainly with the maintenance of high leaf water potential (LWP) at flowering and grain filling stage. Considerable variation for LWP among rice varieties has been recorded. The present work was designed to investigate genotypic consistency in water potential within the plant and under canopy manipulation to vary plant water requirement. In a glasshouse experiment, with six rice genotypes, a consistent water potential gradient from stem base to leaf tip has been observed. Leaf tip water potential has been found as the minimum LWP that can be recorded at any time of stress. Genotypes with similar canopy size could maintain different levels of LWP under stress conditions. In a field experiment, with four selected lines, four canopy sizes and two canopy mixture treatments were introduced prior to the imposition of control, mild and severe water stress conditions. It was found that the line differences in LWP and relative water content (RWC) were expressed under both mild and severe stress conditions, regardless of canopy size, tiller number and whether they were mixed with another line with different capacity to maintain LWP. Although there were some differences among canopy size treatments for radiation interception in three water conditions, canopy manipulation (plant size) within a line did not affect the expression of LWP and hence genotypic variation in LWP was maintained. Under both glasshouse and field conditions, lines that maintained high LWP had larger xylem diameter and stem areas than those that had low LWP. The results indicated that the size of the vascular bundles could influence the maintenance of plant water relations under water deficit. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity (K-s), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stern hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced midday loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle.
Resumo:
We investigated how species identity and variation in salinity and nutrient availability influence the hydraulic conductivity of mangroves. Using a fertilization study of two species in Florida, we found that stem hydraulic conductivity expressed on a leaf area basis (K-leaf) was significantly different among species of differing salinity tolerance, but was not significantly altered by enrichment with limiting nutrients. Reviewing data from two additional sites (Panama and Belize), we found an overall pattern of declining leaf-specific hydraulic conductivity (K-leaf) with increasing salinity. Over three sites, a general pattern emerges, indicating that native stem hydraulic conductivity (K-h) and K-leaf are less sensitive to nitrogen (N) fertilization when N limits growth, but more sensitive to phosphorus (P) fertilization when P limits growth. Processes leading to growth enhancement with N fertilization are probably associated with changes in allocation to leaf area and photosynthetic processes, whereas water uptake and transport processes could be more limiting when P limits growth. These findings suggest that whereas salinity and species identity place broad bounds on hydraulic conductivity, the effects of nutrient availability modulate hydraulic conductivity and growth in complex ways.