927 resultados para wind generator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The successful in the implementation of wind turbines depends on several factors, including: the wind resource at the installation site, the equipment used, project acquisition and operational costs. In this paper, the production of electricity from two small wind turbines was compared through simulation using the computer software HOMER - a national model of 6kW and an imported one of 5kW. The wind resources in three different cities were considered: Campinas (SP/BR), Cubatão (São Paulo/BR) and Roscoe (Texas/ USA). A wind power system connected to the grid and a wind isolated system - batteries were evaluated. The results showed that the energy cost ($/kWh) is strongly dependent on the windmill characteristics and local wind resource. Regarding the isolated wind system – batteries, the full supply guarantee to the simulated electrical load is only achieved with a battery bank with many units and high number of wind turbines, due to the intermittency of wind power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permanent magnet generators (PMG) represent the cutting edge technology in modern wind mills. The efficiency remains high (over 90%) at partial loads. To improve the machine efficiency even further, every aspect of machine losses has to be analyzed. Additional losses are often given as a certain percentage without providing any detailed information about the actual calculation process; meanwhile, there are many design-dependent losses that have an effect on the total amount of additional losses and that have to be taken into consideration. Additional losses are most often eddy current losses in different parts of the machine. These losses are usually difficult to calculate in the design process. In this doctoral thesis, some additional losses are identified and modeled. Further, suggestions on how to minimize the losses are given. Iron losses can differ significantly between the measured no-load values and the loss values under load. In addition, with embedded magnet rotors, the quadrature-axis armature reaction adds losses to the stator iron by manipulating the harmonic content of the flux. It was, therefore, re-evaluated that in salient pole machines, to minimize the losses and the loss difference between the no-load and load operation, the flux density has to be kept below 1.5 T in the stator yoke, which is the traditional guideline for machine designers. Eddy current losses may occur in the end-winding area and in the support structure of the machine, that is, in the finger plate and the clamping ring. With construction steel, these losses account for 0.08% of the input power of the machine. These losses can be reduced almost to zero by using nonmagnetic stainless steel. In addition, the machine housing may be subjected to eddy current losses if the flux density exceeds 1.5 T in the stator yoke. Winding losses can rise rapidly when high frequencies and 10–15 mm high conductors are used. In general, minimizing the winding losses is simple. For example, it can be done by dividing the conductor into transposed subconductors. However, this comes with the expense of an increase in the DC resistance. In the doctoral thesis, a new method is presented to minimize the winding losses by applying a litz wire with noninsulated strands. The construction is the same as in a normal litz wire but the insulation between the subconductors has been left out. The idea is that the connection is kept weak to prevent harmful eddy currents from flowing. Moreover, the analytical solution for calculating the AC resistance factor of the litz-wire is supplemented by including an end-winding resistance in the analytical solution. A simple measurement device is developed to measure the AC resistance in the windings. In the case of a litz-wire with originally noninsulated strands, vacuum pressure impregnation (VPI) is used to insulate the subconductors. In one of the two cases studied, the VPI affected the AC resistance factor, but in the other case, it did not have any effect. However, more research is needed to determine the effect of the VPI on litz-wire with noninsulated strands. An empirical model is developed to calculate the AC resistance factor of a single-layer formwound winding. The model includes the end-winding length and the number of strands and turns. The end winding includes the circulating current (eddy currents that are traveling through the whole winding between parallel strands) and the main current. The end-winding length also affects the total AC resistance factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes a lumped parameter mathematical model for the prediction of transients in an aerodynamic circuit of a transonic wind tunnel. Control actions to properly handle those perturbations are also assessed. The tunnel circuit technology is up to date and incorporates a novel feature: high-enthalpy air injection to extend the tunnel’s Reynolds number capability. The model solves the equations of continuity, energy and momentum and defines density, internal energy and mass flow as the basic parameters in the aerodynamic study as well as Mach number, stagnation pressure and stagnation temperature, all referred to test section conditions, as the main control variables. The tunnel circuit response to control actions and the stability of the flow are numerically investigated. Initially, for validation purposes, the code was applied to the AWT ("Altitude Wind Tunnel" of NASA-Lewis). In the sequel, the Brazilian transonic wind tunnel was investigated, with all the main control systems modeled, including injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work shows how thick boundary layers can be produced in a short wind tunnel with a view to simulate atmospheric flows. Several types of thickening devices are analysed. The experimental assessment of the devices was conducted by considering integral properties of the flow and the spectra: skin-friction, mean velocity profiles in inner and outer co-ordinates and longitudinal turbulence. Designs based on screens, elliptic wedge generators, and cylindrical rod generators are analysed. The paper describes in detail the experimental arrangement, including the features of the wind tunnel and of the instrumentation. The results are compared with experimental data published by other authors and with naturally developed flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, permanent magnet synchronous generators (PMSGs) are of great interest. Since they do not have electrical excitation losses, the highly efficient, lightweight and compact PMSGs equipped with damper windings work perfectly when connected to a network. However, in island operation, the generator (or parallel generators) alone is responsible for the building up of the network and maintaining its voltage and reactive power level. Thus, in island operation, a PMSG faces very tight constraints, which are difficult to meet, because the flux produced by the permanent magnets (PMs) is constant and the voltage of the generator cannot be controlled. Traditional electrically excited synchronous generators (EESGs) can easily meet these constraints, because the field winding current is controllable. The main drawback of the conventional EESG is the relatively high excitation loss. This doctoral thesis presents a study of an alternative solution termed as a hybrid excitation synchronous generator (HESG). HESGs are a special class of electrical machines, where the total rotor current linkage is produced by the simultaneous action of two different excitation sources: the electrical and permanent magnet (PM) excitation. An overview of the existing HESGs is given. Several HESGs are introduced and compared with the conventional EESG from technical and economic points of view. In the study, the armature-reaction-compensated permanent magnet synchronous generator with alternated current linkages (ARC-PMSG with ACL) showed a better performance than the other options. Therefore, this machine type is studied in more detail. An electromagnetic design and a thermal analysis are presented. To verify the operation principle and the electromagnetic design, a down-sized prototype of 69 kVA apparent power was built. The experimental results are demonstrated and compared with the predicted ones. A prerequisite for an ARC-PMSG with ACL is an even number of pole pairs (p = 2, 4, 6, …) in the machine. Naturally, the HESG technology is not limited to even-pole-pair machines. However, the analysis of machines with p = 3, 5, 7, … becomes more complicated, especially if analytical tools are used, and is outside the scope of this thesis. The contribution of this study is to propose a solution where an ARC-PMSG replaces an EESG in electrical power generation while meeting all the requirements set for generators given for instance by ship classification societies, particularly as regards island operation. The maximum power level when applying the technology studied here is mainly limited by the economy of the machine. The larger the machine is, the smaller is the efficiency benefit. However, it seems that machines up to ten megawatts of power could benefit from the technology. However, in low-power applications, for instance in the 500 kW range, the efficiency increase can be significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maailmanlaajuinen ilmastopolitiikka asettaa vaativia tavoitteita hiilidioksidipäästöjen vähentämiselle. Suurin haaste on tuottaa energiaa mahdollisimman alhaisin kustannuksin käyttäen uusiutuvia ja ympäristöä säästäviä energiamuotoja. Tuulivoimasta on tullut nopeimmin kehittyvä sähköntuotantotapa, ja tuuliturbiinien koon kasvun myötä on myös generaattorien koko kasvanut merkittävästi 1990-luvulta lähtien. Generaattorin massiivisuus suoravetoisessa tuuliturbiinin voimansiirrossa vaatii tarkkoja kuormitustarkasteluja, jotta rakenne kestäisi tuuliturbiinin eliniän. Tuuliturbiinin kuormitukset ovat stokastisia ja toisinaan erittäin suuria, mikä vaikeuttaa kuormitusten määrittämistä. Tuulen kuormitusten lisäksi generaattori altistuu eri toimintojen kautta muillekin kuormituksille, ja tästä syystä on otettava huomioon jarrutuksen, dynaamisen tasapainon ja ohjauksen sekä verkkovikojen aiheuttamat rasitukset tuuliturbiinin voimansiirrolle. Edellisten lisäksi työssä on tarkasteltu erilaisia rakenneratkaisuja sekä pyritty kiinnittämään huomio niiden kuormankantokykyyn ja jäykkyyteen sekä generaattorin keventämismahdollisuuksiin verrattuna perinteisiin radiaalivuogeneraattoreihin. Työssä on pyritty selvittämään rakenteen kuormitukset siten, että pystyttäisiin optimoimaan mahdollisimman kevyt rakenne. Optimoinnin kohteena on pinnarakenteisen generaattorin rakenteen massa puolien, puolan kulmien sekä tukirenkaan ja niistä aiheutuvien erilaisten rakenneyhdistelmien suhteen tarkasteltuna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this master’s thesis, wind speeds and directions were modeled with the aim of developing suitable models for hourly, daily, weekly and monthly forecasting. Artificial Neural Networks implemented in MATLAB software were used to perform the forecasts. Three main types of artificial neural network were built, namely: Feed forward neural networks, Jordan Elman neural networks and Cascade forward neural networks. Four sub models of each of these neural networks were also built, corresponding to the four forecast horizons, for both wind speeds and directions. A single neural network topology was used for each of the forecast horizons, regardless of the model type. All the models were then trained with real data of wind speeds and directions collected over a period of two years in the municipal region of Puumala in Finland. Only 70% of the data was used for training, validation and testing of the models, while the second last 15% of the data was presented to the trained models for verification. The model outputs were then compared to the last 15% of the original data, by measuring the mean square errors and sum square errors between them. Based on the results, the feed forward networks returned the lowest generalization errors for hourly, weekly and monthly forecasts of wind speeds; Jordan Elman networks returned the lowest errors when used for forecasting of daily wind speeds. Cascade forward networks gave the lowest errors when used for forecasting daily, weekly and monthly wind directions; Jordan Elman networks returned the lowest errors when used for hourly forecasting. The errors were relatively low during training of the models, but shot up upon simulation with new inputs. In addition, a combination of hyperbolic tangent transfer functions for both hidden and output layers returned better results compared to other combinations of transfer functions. In general, wind speeds were more predictable as compared to wind directions, opening up opportunities for further research into building better models for wind direction forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, due to the increasing total construction and transportation cost and difficulties associated with handling massive structural components or assemblies, there has been increasing financial pressure to reduce structural weight. Furthermore, advances in material technology coupled with continuing advances in design tools and techniques have encouraged engineers to vary and combine materials, offering new opportunities to reduce the weight of mechanical structures. These new lower mass systems, however, are more susceptible to inherent imbalances, a weakness that can result in higher shock and harmonic resonances which leads to poor structural dynamic performances. The objective of this thesis is the modeling of layered sheet steel elements, to accurately predict dynamic performance. During the development of the layered sheet steel model, the numerical modeling approach, the Finite Element Analysis and the Experimental Modal Analysis are applied in building a modal model of the layered sheet steel elements. Furthermore, in view of getting a better understanding of the dynamic behavior of layered sheet steel, several binding methods have been studied to understand and demonstrate how a binding method affects the dynamic behavior of layered sheet steel elements when compared to single homogeneous steel plate. Based on the developed layered sheet steel model, the dynamic behavior of a lightweight wheel structure to be used as the structure for the stator of an outer rotor Direct-Drive Permanent Magnet Synchronous Generator designed for high-power wind turbines is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High magnetic fields and extremely low temperatures are essential in the study of new semiconductor materials for example in the field of spintronics. Typical phenomenons that arise in such conditions are: Hall Effect, Anomalous Hall effect and Shubnikov de-Haas effect. In this thesis a device capable for such conditions was described. A strong magnetic field pulse generator situated in the laboratory of physics and the Lappeenranta University of Technology was studied. The device is introduced in three parts. First one is the pulsed field magnetic generator, which is responsible for generating the high magnetic field. Next one is the measurement systems, which are responsible for monitoring the sample and the system itself. The last part describes the cryostat system, which allows the extremely cold temperatures in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the latter days, human activities constantly increase greenhouse gases emissions in the atmosphere, which has a direct impact on a global climate warming. Finland as European Union member, developed national structural plan to promote renewable energy generation, pursuing the aspects of Directive 2009/28/EC and put it on the sharepoint. Finland is on a way of enhancing national security of energy supply, increasing diversity of the energy mix. There are plenty significant objectives to develop onshore and offshore wind energy generation in country for a next few decades, as well as another renewable energy sources. To predict the future changes, there are a lot of scenario methods developed and adapted to energy industry. The Master’s thesis explored “Fuzzy cognitive maps” approach in scenarios developing, which captures expert’s knowledge in a graphical manner and using these captures for a raw scenarios testing and refinement. There were prospects of Finnish wind energy development for the year of 2030 considered, with aid of FCM technique. Five positive raw scenarios were developed and three of them tested against integrated expert’s map of knowledge, using graphical simulation. The study provides robust scenarios out of the preliminary defined, as outcome, assuming the impact of results, taken after simulation. The thesis was conducted in such way, that there will be possibilities to use existing knowledge captures from expert panel, to test and deploy different sets of scenarios regarding to Finnish wind energy development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the design of electrical machines, efficiency improvements have become very important. However, there are at least two significant cases in which the compactness of electrical machines is critical and the tolerance of extremely high losses is valued: vehicle traction, where very high torque density is desired at least temporarily; and direct-drive wind turbine generators, whose mass should be acceptably low. As ever higher torque density and ever more compact electrical machines are developed for these purposes, thermal issues, i.e. avoidance of over-temperatures and damage in conditions of high heat losses, are becoming of utmost importance. The excessive temperatures of critical machine components, such as insulation and permanent magnets, easily cause failures of the whole electrical equipment. In electrical machines with excitation systems based on permanent magnets, special attention must be paid to the rotor temperature because of the temperature-sensitive properties of permanent magnets. The allowable temperature of NdFeB magnets is usually significantly less than 150 ˚C. The practical problem is that the part of the machine where the permanent magnets are located should stay cooler than the copper windings, which can easily tolerate temperatures of 155 ˚C or 180 ˚C. Therefore, new cooling solutions should be developed in order to cool permanent magnet electrical machines with high torque density and because of it with high concentrated losses in stators. In this doctoral dissertation, direct and indirect liquid cooling techniques for permanent magnet synchronous electrical machines (PMSM) with high torque density are presented and discussed. The aim of this research is to analyse thermal behaviours of the machines using the most applicable and accurate thermal analysis methods and to propose new, practical machine designs based on these analyses. The Computational Fluid Dynamics (CFD) thermal simulations of the heat transfer inside the machines and lumped parameter thermal network (LPTN) simulations both presented herein are used for the analyses. Detailed descriptions of the simulated thermal models are also presented. Most of the theoretical considerations and simulations have been verified via experimental measurements on a copper tooth-coil (motorette) and on various prototypes of electrical machines. The indirect liquid cooling systems of a 100 kW axial flux (AF) PMSM and a 110 kW radial flux (RF) PMSM are analysed here by means of simplified 3D CFD conjugate thermal models of the parts of both machines. In terms of results, a significant temperature drop of 40 ̊C in the stator winding and 28 ̊C in the rotor of the AF PMSM was achieved with the addition of highly thermally conductive materials into the machine: copper bars inserted in the teeth, and potting material around the end windings. In the RF PMSM, the potting material resulted in a temperature decrease of 6 ̊C in the stator winding, and in a decrease of 10 ̊C in the rotor embedded-permanentmagnets. Two types of unique direct liquid cooling systems for low power machines are analysed herein to demonstrate the effectiveness of the cooling systems in conditions of highly concentrated heat losses. LPTN analysis and CFD thermal analysis (the latter being particularly useful for unique design) were applied to simulate the temperature distribution within the machine models. Oil-immersion cooling provided good cooling capability for a 26.6 kW PMSM of a hybrid vehicle. A direct liquid cooling system for the copper winding with inner stainless steel tubes was designed for an 8 MW directdrive PM synchronous generator. The design principles of this cooling solution are described in detail in this thesis. The thermal analyses demonstrate that the stator winding and the rotor magnet temperatures are kept significantly below their critical temperatures with demineralized water flow. A comparison study of the coolant agents indicates that propylene glycol is more effective than ethylene glycol in arctic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main generator source of a longitudinal muscle contraction was identified as an M (mechanical-stimulus-sensitive) circuit composed of a presynaptic M-1 neuron and a postsynaptic M-2 neuron in the ventral nerve cord of the earthworm, Amynthas hawayanus, by simultaneous intracellular response recording and Lucifer Yellow-CH injection with two microelectrodes. Five-peaked responses were evoked in both neurons by a mechanical, but not by an electrical, stimulus to the mechanoreceptor in the shaft of a seta at the opposite side of an epidermis-muscle-nerve-cord preparation. This response was correlated to 84% of the amplitude, 73% of the rising rate and 81% of the duration of a longitudinal muscle contraction recorded by a mechano-electrical transducer after eliminating the other possible generator sources by partitioning the epidermis-muscle piece of this preparation. The pre- and postsynaptic relationship between these two neurons was determined by alternately stimulating and recording with two microelectrodes. Images of the Lucifer Yellow-CH-filled M-1 and M-2 neurons showed that both of them are composed of bundles of longitudinal processes situated on the side of the nerve cord opposite to stimulation. The M-1 neuron has an afferent process (A1) in the first nerve at the stimulated side of this preparation and the M-2 neuron has two efferent processes (E1 and E3) in the first and third nerves at the recording side where their effector muscle cell was identified by a third microelectrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constant facilitation of responses evoked in the earthworm muscle contraction generator neurons by responses evoked in the neurons of its peripheral nervous system was demonstrated. It is based on the proposal that these two responses are bifurcations of an afferent response evoked by the same peripheral mechanical stimulus but converging again on this central neuron. A single-peaked generator response without facilitation was demonstrated by sectioning the afferent route of the peripheral facilitatory modulatory response, or conditioning response (CR). The multipeaked response could be restored by restimulating the sectioned modulatory neuron with an intracellular substitutive conditioning stimulus (SCS). These multi-peaked responses were proposed to be the result of reverberating the original single peaked unconditioned response (UR) through a parallel (P) neuronal circuit which receives the facilitation of the peripheral modulatory neuron. This peripheral modulatory neuron was named "Peri-Kästchen" (PK) neuron because it has about 20 peripheral processes distributed on the surface of a Kästchen of longitudinal muscle cells on the body wall of this preparation as revealed by the Lucifer Yellow-CH-filling method.