797 resultados para whole body
Resumo:
Tese de doutoramento, Farmácia (Bioquímica), Universidade de Lisboa, Faculdade de Farmácia, 2014
Resumo:
Purpose The purpose of the present study was to develop and describe a simple method to evaluate the rate of ion reabsorption of eccrine sweat glands in human using the measurement of galvanic skin conductance (GSC) and local sweating rate (SR). This purpose was investigated by comparing the SR threshold for increasing GSC with following two criteria of sweat ion reabsorption in earlier studies such as 1) the SR threshold for increasing sweat ion was at approximately 0.2 to 0.5 mg/cm2/min and 2) exercise-heat acclimation improved the sweat ion reabsorption ability and would increase the criteria 1. Methods Seven healthy non-heat-acclimated male subjects received passive heat treatment both before and after 7 days of cycling in hot conditions (50% maximum oxygen uptake, 60 min/day, ambient temperature 32°C, and 50% relative humidity). Results Subjects became partially heat-acclimated, as evidenced by the decreased end-exercise heart rate (p<0.01), rate of perceived exhaustion (p<0.01), and oesophageal temperature (p=0.07), without alterations in whole-body sweat loss, from the first to the last day of training. As hypothesised, we confirmed that the SR threshold for increasing GSC was near the predicted SR during passive heating before exercise heat acclimation, and increased significantly after training (0.19 ± 0.09 to 0.32 ± 0.10 mg/cm2/min, p<0.05). Conclusions The reproducibility of sweat ion reabsorption by the eccrine glands in the present study suggests that the relationship between GSC and SR can serve as a new index for assessing the maximum rate of sweat ion reabsorption of eccrine sweat glands in humans.
Resumo:
CONTEXT AND OBJECTIVE: No current biomarker can reliably predict visceral and liver fat content, both of which are risk factors for cardiovascular disease. Vagal tone has been suggested to influence regional fat deposition. Pancreatic polypeptide (PP) is secreted from the endocrine pancreas under vagal control. We investigated the utility of PP in predicting visceral and liver fat. PATIENTS AND METHODS: Fasting plasma PP concentrations were measured in 104 overweight and obese subjects (46 men and 58 women). In the same subjects, total and regional adipose tissue, including total visceral adipose tissue (VAT) and total subcutaneous adipose tissue (TSAT), were measured using whole-body magnetic resonance imaging. Intrahepatocellular lipid content (IHCL) was quantified by proton magnetic resonance spectroscopy. RESULTS: Fasting plasma PP concentrations positively and significantly correlated with both VAT (r = 0.57, P < .001) and IHCL (r = 0.51, P < .001), but not with TSAT (r = 0.02, P = .88). Fasting PP concentrations independently predicted VAT after controlling for age and sex. Fasting PP concentrations independently predicted IHCL after controlling for age, sex, body mass index (BMI), waist-to-hip ratio, homeostatic model assessment 2-insulin resistance, (HOMA2-IR) and serum concentrations of triglyceride (TG), total cholesterol (TC), and alanine aminotransferase (ALT). Fasting PP concentrations were associated with serum ALT, TG, TC, low- and high-density lipoprotein cholesterol, and blood pressure (P < .05). These associations were mediated by IHCL and/or VAT. Fasting PP and HOMA2-IR were independently significantly associated with hepatic steatosis (P < .01). CONCLUSIONS: Pancreatic polypeptide is a novel predictor of visceral and liver fat content, and thus a potential biomarker for cardiovascular risk stratification and targeted treatment of patients with ectopic fat deposition.
Resumo:
Sexual dimorphism in adiposity is well described in adults, but the age at which differences first manifest is uncertain. Using a prospective cohort, we describe longitudinal changes in directly measured adiposity and intrahepatocellular lipid (IHCL) in relation to sex in healthy term infants. At median ages of 13 and 63 days, infants underwent quantification of adipose tissue depots by whole-body magnetic resonance imaging and measurement of IHCL by in vivo proton magnetic resonance spectroscopy. Longitudinal data were obtained from 70 infants (40 boys and 30 girls). In the neonatal period girls are more adipose in relation to body size than boys. At follow-up (median age 63 days), girls remained significantly more adipose. The greater relative adiposity that characterises girls is explained by more subcutaneous adipose tissue and this becomes increasingly apparent by follow-up. No significant sex differences were seen in IHCL. Sex-specific differences in infant adipose tissue distribution are in keeping with those described in later life, and suggest that sexual dimorphism in adiposity is established in early infancy.
Resumo:
Spatial perspective-taking that involves imagined changes in one’s spatial orientation is facilitated by vestibular stimulation inducing a congruent sensation of self-motion. We examined further the role of vestibular resources in perspective-taking by evaluating whether aberrant and conflicting vestibular stimulation impaired perspective-taking performance. Participants (N = 39) undertook either an “own body transformation” (OBT)task, requiring speeded spatial judgments made from the perspective of a schematic figure, or a control task requiring reconfiguration of spatial mappings from one’s own visuo-spatial perspective. These tasks were performed both without and with vestibular stimulation by whole-body Coriolis motion, according to a repeated measures design, balanced for order. Vestibular stimulation was found to impair performance during the first minute post stimulus relative to the stationary condition. This disruption was task-specific, affecting only the OBT task and not the control task, and dissipated by the second minute post-stimulus. Our experiment thus demonstrates selective temporary impairment of perspective-taking from aberrant vestibular stimulation, implying that uncompromised vestibular resources are necessary for efficient perspective-taking. This finding provides evidence for an embodied mechanism for perspective-taking whereby vestibular input contributes to multisensory processing underlying bodily and social cognition. Ultimately, this knowledge may contribute to the design of interventions that help patients suffering sudden vertigo adapt to the cognitive difficulties caused by aberrant vestibular stimulation.
Resumo:
Body composition, resting energy expenditure (REE), and whole body protein metabolism were studied in 26 young and 28 elderly Gambian men matched for body mass index during the dry season in a rural village in The Gambia. REE was measured by indirect calorimetry (hood system) in the fasting state and after five successive meals. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotopic enrichment of urinary ammonia over a period of 12 h after a single oral dose of [15N]glycine. Expressed in absolute value, REE was significantly lower in the elderly compared with the young group (3.21 +/- 0.07 vs. 4.04 +/- 0.07 kJ/min, P < 0.001) and when adjusted to body weight (3.29 +/- 0.05 vs. 3.96 +/- 0.05 kJ/min, P < 0.0001) and fat-free mass (FFM; 3.38 +/- 0.01 vs. 3.87 +/- 0.01 kJ/min, P < 0.0001). The rate of protein synthesis averaged 207 +/- 13 g protein/day in the elderly and 230 +/- 13 g protein/day in the young group, whereas protein breakdown averaged 184 +/- 13 g protein/day in the elderly and 203 +/- 13 g protein/day in the young group (nonsignificant). When values were adjusted for body weight or FFM, they did not reveal any difference between the two groups. It is concluded that the reduced REE adjusted for body composition observed in elderly Gambian men is not explained by a decrease in protein turnover.
Resumo:
OBJECTIVE: Contemporary free-breathing non contrast enhanced cardiovascular magnetic resonance angiography (CMRA) was qualitatively and quantitatively evaluated to ascertain the reproducibility of the method for coronary artery luminal dimension measurements. SUBJECTS AND METHODS: Twenty-two healthy volunteers (mean age 32 +/- 7 years, 12 males) without coronary artery disease were imaged at 2 centers (1 each in Europe and North America) using navigator-gated and corrected SSFP CMRA on a commercial whole body 1.5T System. Repeat images of right (RCA, n = 21), left anterior descending (LAD, n = 14) and left circumflex (LCX, n = 14) coronary arteries were obtained in separate sessions using identical scan protocol and imaging parameters. True visible vessel length, signal-to-noise (SNR), contrast-to-noise ratios (CNR) and the average luminal diameter over the first 4 cm of the vessel were measured. Intra-observer, inter-observer and inter-scan reproducibility of coronary artery luminal diameter were determined using Pearson's correlation, Bland-Altman analysis and intraclass correlation coefficients (ICC). RESULTS: CNR, SNR and the mean length of the RCA, LAD and LCX imaged for original and repeat scans were not significantly different (all p > 0.30). There was a high degree of intra-observer, inter-observer and inter-scan agreements for RCA, LAD and LCX luminal diameter respectively on Bland-Altman and ICC analysis (ICC's for RCA: 0.98. 0.98 and 0.86; LAD: 0.89, 0.89 and 0.63; LCX: 0.95, 0.94 and 0.79). CONCLUSION: In a 2-center study, we demonstrate that free-breathing 3D SSFP CMRA can visualize long continuous segments of coronary vessels with highly reproducible measurements of luminal diameter.
Resumo:
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity
Resumo:
BACKGROUND: The presence of multiple melanocytic naevi is a strong risk factor for melanoma. Use of the whole body naevus count to identify at-risk patients is impractical. OBJECTIVES: To (i) identify a valid anatomical predictor of total naevus count; (ii) determine the number of naevi that most accurately predict total naevus count above 25, 50 and 100; and (iii) evaluate determinants of multiple melanocytic naevi and atypical naevi. METHODS: Clinical data from 292 consecutive Spanish patients consulting for skin lesions requiring debriding were collected throughout 2009 and 2010. Correlations between site-specific and whole body naevus counts were analysed. Cut-offs to predict total naevus counts were determined using the area under the receiver operating characteristic curve. RESULTS: The studied population was young (median age 31 years, interquartile range 28-43). The naevus count on the right arm correlated best with the total nevus count (R(2) 0·80 for men, 0·86 for women). Presence of at least five naevi on the right arm was the strongest determinant of a total naevus count above 50 [odds ratio (OR) 34·4, 95% confidence interval (CI) 13·9-85·0] and of having at least one atypical naevus (OR 5·7, 95% CI 2·4-13·5). Cut-off values of 6, 8 and 11 naevi on the right arm best predicted total naevus count above 25, 50 and 100, respectively. CONCLUSIONS: Our results support the arm as a practical and reliable site to estimate the total naevus count when screening or phenotyping large populations. Threshold values for the number of naevi on the arm are proposed to help identify patients for melanoma screening.
Resumo:
Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
The highly amiloride-sensitive epithelial sodium channel ENaC is well known to be involved in controlling whole body sodium homeostasis and lung liquid clearance. ENaC expression has also been detected in the skin of amphibians and mammals. Mice lacking ENaC expression lose rapidly weight associated with an epidermal barrier defect that develops following birth. This dehydration is accompanied with a highly abnormal lipid matrix composition and an impaired skin surface acidification. This strongly suggests a role of ENaC in the maturation of barrier function rather than in the prenatal generation of the barrier, and may be as such an important modulator for skin hydration. In parallel, gene targeting experiments of regulators of ENaC activity, membrane serine proteases, also termed channel activating proteases, like CAP1/Prss8 and matriptase/MT-SP1 by themselves have been shown to be crucial for the epidermal barrier function. In our review, we mainly focus on the role of ENaC and its regulators in the skin and discuss their importance in the epidermal permeability barrier function.
Resumo:
Despite its small fraction of the total body weight (2%), the brain contributes for 20% and 25% respectively of the total oxygen and glucose consumption of the whole body. Indeed, glucose has been considered the energy substrate par excellence for the brain. However, evidence accumulated over the last half century revealed an important role for the monocarboxylate lactate in fulfilling the energy needs of neurons. This is particularly true during physiological neuronal activation and in pathological conditions. Lactate transport into and out of the cell is mediated by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, only three of them have been well characterized: MCT2 is the predominant neuronal isoform, while the other non¬neuronal cell types of the brain express the ubiquitous isoform MCT1. Quite recently, the MCT4 isoform has been described in astrocytes. Due to its high transport capacity compared to the other two isoforms, MCT4 is particularly adapted for glycolytic cells. Because of its recent discovery in the brain, nothing was known about its regulation in the central nervous system. Here we show that MCT4 is regulated by oxygen levels in primary cultures of astrocytes in a time- and concentration-dependent manner via the hypoxia inducible factor-la (HIF-la). Moreover, we showed that MCT4 expression is essential for astrocyte survival under low oxygen conditions. In parallel, we investigated the possible implication of the pyruvate kinase isoform Pkm2, a strong enhancer of glycolysis, in its regulation. Then we showed that MCT4 expression, as well as the expression of the other two MCT isoforms, is altered in a murine model of stroke. Surprisingly, neurons started to express MCT4, as well as MCT1, under such conditions. Altogether, these data suggest that MCT4, due to its high transport capacity for lactate, may be the isoform that enables cells to operate a major metabolic adaptation in response to pathological situations that alter metabolic homeostasis of the brain. -- Le cerveau représente 2% du poids corporel total, mais il contribue pour 20% de la consommation totale d'oxygène et 25% de celle de glucose au repos. Le glucose est considéré comme le substrat énergétique par excellence pour le cerveau. Néanmoins, depuis un demi- siècle maintenant, de plus en plus de travaux ont démontré que le lactate joue un rôle majeur dans le métabolisme cérébral et est capable du subvenir aux besoins énergétiques des neurones. Le lactate est tout particulièrement nécessaire pendant l'activation neuronale ainsi qu'en situation pathologique. Le transport du lactate à travers la barrière hématoencéphalique ainsi qu'à travers les membranes cellulaires est assuré par la famille des transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, uniquement trois d'entre eux ont été décrits: MCT2 est considéré comme le transporteur neuronal, alors que les autres types cellulaires qui constituent le cerveau expriment l'isoforme ubiquitaire MCT1. Récemment, l'isoforme MCT4 a été rapportée sur les astrocytes. Dû à sa grande capacité de transport pour le lactate, MCT4 est tout particulièrement adapté pour soutenir le métabolisme des cellules hautement glycolytiques, comme les astrocytes. En raison de sa toute récente découverte, les aspects comprenant sa régulation et son rôle dans le cerveau sont pour l'instant méconnus. Les résultats exposés dans ce travail démontrent dans un premier temps que l'expression de MCT4 est régulée par les niveaux d'oxygène dans les cultures d'astrocytes corticaux par le biais du facteur de transcription HIF-la. De plus, nous avons démontré que l'expression de MCT4 est essentielle à la survie des astrocytes quand le niveau d'oxygénation baisse. En parallèle, des résultats préliminaires suggèrent que l'isoforme 2 de la pyruvate kinase, un puissant régulateur de la glycolyse, pourrait jouer un rôle dans la régulation de MCT4. Dans la deuxième partie du travail nous avons démontré que l'expression de MCT4, ainsi que celle de MCT1 et MCT2, est altérée dans un modèle murin d'ischémie cérébrale. De façon surprenante, les neurones expriment MCT4 dans cette condition, alors que ce n'est pas le cas en condition physiologique. En tenant compte de ces résultats, nous suggérons que MCT4, dû à sa particulièrement grande capacité de transport pour le lactate, représente le MCT qui permet aux cellules du système nerveux central, notamment les astrocytes et les neurones, de s'adapter à de très fortes perturbations de l'homéostasie métabolique du cerveau qui surviennent en condition pathologique.
Resumo:
This thesis investigated whole body glucose disposal and the adaptive changes in skeletal muscle carbohydrate metabolism following 28 d of supplementation with 1000 mg R(+)-lipoic acid in young sedentary males (age, 22.1 ± 0.67 yr, body mass, 78.7 ± 10.3 kg, n=9). In certain individuals, lipoic acid decreased the 180-min area under the glucose concentration and insulin concentration curve during an oral glucose tolerance test (OGTT) (n=4). In the same individuals, lipoic acid supplementation decreased pyruvate dehydrogenase kinase activity (PDK) (0.09 ± 0.024 min"^ vs. 0.137 ± 0.023 min'\ n=4). The fasting levels of the activated form of pyruvate dehydrogenase (PDHa) were decreased following lipoic acid (0.42 ± 0.13 mmol-min'kg'^ vs. 0.82 ± 0.32 mmolrnin'^kg"\ n=4), yet increased to a greater extent during the OGTT (1.21 ± 0.34 mmol-min'kg"' vs. 0.81 ±0.13 mmolmin"'kg'\ n=4) following hpoic acid supplementation. No changes were demonstrated in the remaining subjects (n=5). It was concluded that improved glucose clearance during an OGTT following lipoic acid supplementation is assisted by increased muscle glucose oxidation through increased PDHa activation and decreased PDK activity in certain individuals.
Resumo:
The influence of peak-dose drug-induced dyskinesia (DID) on manual tracking (MT) was examined in 10 dyskinetic patients (OPO), and compared to 10 age/gendermatched non-dyskinetic patients (NDPD) and 10 healthy controls. Whole body movement (WBM) and MT were recorded with a 6-degrees of freedom magnetic motion tracker and forearm rotation sensors, respectively. Subjects were asked to match the length of a computer-generated line with a line controlled via wrist rotation. Results show that OPO patients had greater WBM displacement and velocity than other groups. All groups displayed increased WBM from rest to MT, but only DPD and NDPO patients demonstrated a significant increase in WBM displacement and velocity. In addition, OPO patients exhibited excessive increase in WBM suggesting overflow DID. When two distinct target pace segments were examined (FAST/SLOW), all groups had slight increases in WBM displacement and velocity from SLOW to FAST, but only OPO patients showed significantly increased WBM displacement and velocity from SLOW to FAST. Therefore, it can be suggested that overflow DID was further increased with increased task speed. OPO patients also showed significantly greater ERROR matching target velocity, but no significant difference in ERROR in displacement, indicating that significantly greater WBM displacement in the OPO group did not have a direct influence on tracking performance. Individual target and performance traces demonstrated this relatively good tracking performance with the exception of distinct deviations from the target trace that occurred suddenly, followed by quick returns to the target coherent in time with increased performance velocity. In addition, performance hand velocity was not correlated with WBM velocity in DPO patients, suggesting that increased ERROR in velocity was not a direct result of WBM velocity. In conclusion, we propose that over-excitation of motor cortical areas, reported to be present in DPO patients, resulted in overflow DID during voluntary movement. Furthermore, we propose that the increased ERROR in velocity was the result of hypermetric voluntary movements also originating from the over-excitation of motor cortical areas.