995 resultados para western Atlantic Ocean
Resumo:
This paper reviews the meteorology of the Western Indian Ocean and uses a state–of–the–art atmospheric general circulation model to investigate the influence of the East African Highlands on the climate of the Indian Ocean and its surrounding regions. The new 44–year re–analysis produced by the European Centre for Medium range Weather Forecasts (ECMWF) has been used to construct a new climatology of the Western Indian Ocean. A brief overview of the seasonal cycle of the Western Indian Ocean is presented which emphasizes the importance of the geography of the Indian Ocean basin for controlling the meteorology of the Western Indian Ocean. The principal modes of inter–annual variability are described, associated with El Niño and the Indian Ocean Dipole or Zonal Mode, and the basic characteristics of the subseasonal weather over the Western Indian Ocean are presented, including new statistics on cyclone tracks derived from the ECMWF re–analyses. Sensitivity experiments, in which the orographic effects of East Africa are removed, have shown that the East African Highlands, although not very high, play a significant role in the climate of Africa, India and Southeast Asia, and in the heat, salinity and momentum forcing of the Western Indian Ocean. The hydrological cycle over Africa is systematically enhanced in all seasons by the presence of the East African Highlands, and during the Asian summer monsoon there is a major redistribution of the rainfall across India and Southeast Asia. The implied impact of the East African Highlands on the ocean is substantial. The East African Highlands systematically freshen the tropical Indian Ocean, and act to focus the monsoon winds along the coast, leading to greater upwelling and cooler sea–surface temperatures.
Resumo:
Observations suggest a possible link between the Atlantic Multidecadal Oscillation (AMO) and El Nino Southern Oscillation (ENSO) variability, with the warm AMO phase being related to weaker ENSO variability. A coupled ocean-atmosphere model is used to investigate this relationship and to elucidate mechanisms responsible for it. Anomalous sea surface temperatures (SSTs) associated with the positive AMO lead to change in the basic state in the tropical Pacific Ocean. This basic state change is associated with a deepened thermocline and reduced vertical stratification of the equatorial Pacific ocean, which in turn leads to weakened ENSO variability. We suggest a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific. The results suggest a non-local mechanism for changes in ENSO statistics and imply that anomalous Atlantic ocean SSTs can modulate both mean climate and climate variability over the Pacific.
Resumo:
Measurements of anthropogenic tracers such as chlorofluorocarbons and tritium must be quantitatively combined with ocean general circulation models as a component of systematic model development. The authors have developed and tested an inverse method, using a Green's function, to constrain general circulation models with transient tracer data. Using this method chlorofluorocarbon-11 and -12 (CFC-11 and -12) observations are combined with a North Atlantic configuration of the Miami Isopycnic Coordinate Ocean Model with 4/3 degrees resolution. Systematic differences can be seen between the observed CFC concentrations and prior CFC fields simulated by the model. These differences are reduced by the inversion, which determines the optimal gas transfer across the air-sea interface, accounting for uncertainties in the tracer observations. After including the effects of unresolved variability in the CFC fields, the model is found to be inconsistent with the observations because the model/data misfit slightly exceeds the error estimates. By excluding observations in waters ventilated north of the Greenland-Scotland ridge (sigma (0) < 27.82 kg m(-3); shallower than about 2000 m), the fit is improved, indicating that the Nordic overflows are poorly represented in the model. Some systematic differences in the model/data residuals remain and are related, in part, to excessively deep model ventilation near Rockall and deficient ventilation in the main thermocline of the eastern subtropical gyre. Nevertheless, there do not appear to be gross errors in the basin-scale model circulation. Analysis of the CFC inventory using the constrained model suggests that the North Atlantic Ocean shallower than about 2000 m was near 20% saturated in the mid-1990s. Overall, this basin is a sink to 22% of the total atmosphere-to-ocean CFC-11 flux-twice the global average value. The average water mass formation rates over the CFC transient are 7.0 and 6.0 Sv (Sv = 10(6) m(3) s(-1)) for subtropical mode water and subpolar mode water, respectively.
Resumo:
A key aspect in designing an ecient decadal prediction system is ensuring that the uncertainty in the ocean initial conditions is sampled optimally. Here, we consider one strategy to address this issue by investigating the growth of optimal perturbations in the HadCM3 global climate model (GCM). More specically, climatically relevant singular vectors (CSVs) - the small perturbations which grow most rapidly for a specic initial condition - are estimated for decadal timescales in the Atlantic Ocean. It is found that reliable CSVs can be estimated by running a large ensemble of integrations of the GCM. Amplication of the optimal perturbations occurs for more than 10 years, and possibly up to 40 years. The identi ed regions for growing perturbations are found to be in the far North Atlantic, and these perturbations cause amplication through an anomalous meridional overturning circulation response. Additionally, this type of analysis potentially informs the design of future ocean observing systems by identifying the sensitive regions where small uncertainties in the ocean state can grow maximally. Although these CSVs are expensive to compute, we identify ways in which the process could be made more ecient in the future.
Resumo:
In the mid-1990s the subpolar gyre of the North Atlantic underwent a remarkable rapid warming, with sea surface temperatures increasing by around 1C in just 2 years. This rapid warming followed a prolonged positive phase of the North Atlantic Oscillation (NAO), but also coincided with an unusually negative NAO index in the winter of 1995/96. By comparing ocean analyses and carefully designed model experiments we show that this rapid warming can be understood as a delayed response to the prolonged positive phase of the NAO, and not simply an instantaneous response to the negative NAO index of 1995/96. Furthermore, we infer that the warming was partly caused by a surge, and subsequent decline, in the Meridional Overturning Circulation and northward heat transport of the Atlantic Ocean. Our results provide persuasive evidence of significant oceanic memory on multi-annual timescales, and are therefore encouraging for the prospects of developing skillful predictions.
Resumo:
In the mid 1990s the North Atlantic subpolar gyre (SPG) warmed rapidly, with sea surface temperatures (SST) increasing by 1°C in just a few years. By examining initialized hindcasts made with the UK Met Office Decadal Prediction System (DePreSys), it is shown that the warming could have been predicted. Conversely, hindcasts that only consider changes in radiative forcings are not able to capture the rapid warming. Heat budget analysis shows that the success of the DePreSys hindcasts is due to the initialization of anomalously strong northward ocean heat transport. Furthermore, it is found that initializing a strong Atlantic circulation, and in particular a strong Atlantic Meridional Overturning Circulation, is key for successful predictions. Finally, we show that DePreSys is able to predict significant changes in SST and other surface climate variables related to the North Atlantic warming.
Resumo:
European climate exhibits variability on a wide range of timescales. Understanding the nature and drivers of this variability is an essential step in developing robust climate predictions and risk assessments. The Atlantic Ocean has been suggested as an important driver of variability in European climate on decadal timescales1, but the importance of this influence in recent decades has been unclear, partly because of difficulties in separating the influence of the Atlantic Ocean from other contributions, for example, from the tropical Pacific Ocean and the stratosphere. Here we analyse four data sets derived from observations to show that, during the 1990s, there was a substantial shift in European climate towards a pattern characterized by anomalously wet summers in northern Europe, and hot, dry, summers in southern Europe, with related shifts in spring and autumn. These changes in climate coincided with a substantial warming of the North Atlantic Ocean, towards a state last seen in the 1950s. The patterns of European climate change in the 1990s are consistent with earlier changes attributed to the influence of the North Atlantic Ocean, and provide compelling evidence that the Atlantic Ocean was the key driver. Our results suggest that the recent pattern of anomalies in European climate will persist as long as the North Atlantic Ocean remains anomalously warm.
Resumo:
The efficiency with which the oceans take up heat has a significant influence on the rate of global warming. Warming of the ocean above 700 m over the past few decades has been well documented. However, most of the ocean lies below 700 m. Here we analyse observations of heat uptake into the deep North Atlantic. We find that the extratropical North Atlantic as a whole warmed by 1.45±0.5×1022 J between 1955 and 2005, but Lower North Atlantic Deep Water cooled, most likely as an adjustment from an early twentieth-century warm period. In contrast, the heat content of Upper North Atlantic Deep Water exhibited strong decadal variability. We demonstrate and quantify the importance of density-compensated temperature anomalies for long-term heat uptake into the deep North Atlantic. These anomalies form in the subpolar gyre and propagate equatorwards. High salinity in the subpolar gyre is a key requirement for this mechanism. In the past 50 years, suitable conditions have occurred only twice: first during the 1960s and again during the past decade. We conclude that heat uptake through density-compensated temperature anomalies will contribute to deep ocean heat uptake in the near term. In the longer term, the importance of this mechanism will be determined by competition between the multiple processes that influence subpolar gyre salinity in a changing climate.
Resumo:
This study examines the relationship between community based organisations and marine and coastal resource management in the Western Indian Ocean Region.
Resumo:
We present a method for deriving the radiative effects of absorbing aerosols in cloudy scenes from satellite retrievals only. We use data of 2005–2007 from various passive sensors aboard satellites of the “A-Train” constellation. The study area is restricted to the tropical- and subtropical Atlantic Ocean. To identify the dependence of the local planetary albedo in cloudy scenes on cloud liquid water path and aerosol optical depth (AOD), we perform a multiple linear regression. The OMI UV-Aerosolindex serves as an indicator for absorbing-aerosol presence. In our method, the aerosol influences the local planetary albedo through direct- (scattering and absorption) and indirect (Twomey) aerosol effects. We find an increase of the local planetary albedo (LPA) with increasing AOD of mostly scattering aerosol and a decrease of the LPA with increasing AOD of mostly absorbing aerosol. These results allow us to derive the direct aerosol effect of absorbing aerosols in cloudy scenes, with the effect of cloudy-scene aerosol absorption in the tropical- and subtropical Atlantic contributing (+21.2±11.1)×10−3 Wm−2 to the global top of the atmosphere radiative forcing.
Resumo:
In the 1960s and early 1970s sea surface temperatures in the North Atlantic Ocean cooled rapidly. There is still considerable uncertainty about the causes of this event, although various mechanisms have been proposed. In this observational study it is demonstrated that the cooling proceeded in several distinct stages. Cool anomalies initially appeared in the mid-1960s in the Nordic Seas and Gulf Stream Extension, before spreading to cover most of the Subpolar Gyre. Subsequently, cool anomalies spread into the tropical North Atlantic before retreating, in the late 1970s, back to the Subpolar Gyre. There is strong evidence that changes in atmospheric circulation, linked to a southward shift of the Atlantic ITCZ, played an important role in the event, particularly in the period 1972-76. Theories for the cooling event must account for its distinctive space-time evolution. Our analysis suggests that the most likely drivers were: 1) The “Great Salinity Anomaly” of the late 1960s; 2) An earlier warming of the subpolar North Atlantic, which may have led to a slow-down in the Atlantic Meridional Overturning Circulation; 3) An increase in anthropogenic sulphur dioxide emissions. Determining the relative importance of these factors is a key area for future work.
Resumo:
Anthropogenic ocean heat uptake is a key factor in determining climate change and sea-level rise. There is considerable uncertainty in projections of freshwater forcing of the ocean, with the potential to influence ocean heat uptake. We investigatethis by adding either -0.1 Sv or +0.1 Sv freshwater to the Atlantic in global climate model simulations, simultaneously imposing an atmospheric CO2 increase. The resulting changes in the Atlantic meridional overturning circulation are roughly equal and opposite (±2Sv). The impact of the perturbation on ocean heat content is more complex, although it is relatively small (~5%) compared to the total anthropogenic heat uptake. Several competing processes either accelerate or retard warming at different depths. Whilst positive freshwater perturbations cause an overall heating of the Atlantic, negative perturbations produce insignificant net changes in heat content. The processes active in our model appear robust, although their net result is likely model- and experiment-dependent.
Resumo:
The aerosol direct radiative effect (DRE) of African smoke was analyzed in cloud scenes over the southeast Atlantic Ocean, using Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite observations and Hadley Centre Global Environmental Model version 2 (HadGEM2) climate model simulations. The observed mean DRE was about 30–35 W m−2 in August and September 2006–2009. In some years, short episodes of high-aerosol DRE can be observed, due to high-aerosol loadings, while in other years the loadings are lower but more prolonged. Climate models that use evenly distributed monthly averaged emission fields will not reproduce these high-aerosol loadings. Furthermore, the simulated monthly mean aerosol DRE in HadGEM2 is only about 6 W m−2 in August. The difference with SCIAMACHY mean observations can be partly explained by an underestimation of the aerosol absorption Ångström exponent in the ultraviolet. However, the subsequent increase of aerosol DRE simulation by about 20% is not enough to explain the observed discrepancy between simulations and observations.
Resumo:
The early Aptian (125 to 121 Ma) records an episode of severe environmental change including a major perturbation of the carbon cycle, an oceanic anoxic event (OAE 1a, 122.5 Ma), a platform drowning episode and a biocalcification crisis. We propose to trace changes in the oxygenation state of the ocean during the early Aptian anoxic event using the redox-sensitive trace-element (RSTE) distribution, phosphorus accumulation rates (PARs) and organic-matter characterization in three different basins of the western Tethys. The following sections have been investigated: Gorgo a Cerbara (central Italy) in the Umbria Marche basin, Glaise (SE France) in the Vocontian basin and Cassis/La Bédoule (SE France) located in the Provencal basin. In the Gorgo a Cerbara section, RSTE distributions show a low background level along the main part of the section, contrasted by different maxima in concentrations within the Selli level. In the Glaise section, the Goguel level displays a weak increase in RSTE contents coeval with moderate TOC values. At Cassis/La Bédoule, no significant RSTE enrichments have been observed in sediments equivalent to the Selli level. These differences in the records of the geochemical proxies of the Selli level or its equivalent indicate the deposition under different redox conditions, probably related to the paleogeography. Our data indicate the development of anoxic–euxinic conditions in the deeper part of the Tethys during OAE 1a, whereas in the shallower environments, conditions were less reducing. Moreover, at Gorgo a Cerbara, the Selli level is characterized by rapid changes in the intensity of reducing conditions in the water column. Ocean eutrophication seems to be a major factor in the development and the persistence of anoxia as suggested by the PAR evolution. Higher PAR values at the onset of OAE 1a suggest an increase in nutrient input, whereas the return to lower values through the first part of the OAE 1a interval may be related to the weakened capacity to retain P in the sedimentary reservoir due to bottom-water oxygen depletion. This general pattern is contrasted by the data of Gorgo a Cerbara, where the sediments deposited during the OAE 1a interval show P-enrichments (mainly authigenic P). This is associated with maxima in TOC values and Corg:Ptot ratios, suggesting that a part of the remobilized P was trapped in the sediments and as such prevented from returning to the water column.