269 resultados para wearable tecnology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Users need to be able to address in-air gesture systems, which means finding where to perform gestures and how to direct them towards the intended system. This is necessary for input to be sensed correctly and without unintentionally affecting other systems. This thesis investigates novel interaction techniques which allow users to address gesture systems properly, helping them find where and how to gesture. It also investigates audio, tactile and interactive light displays for multimodal gesture feedback; these can be used by gesture systems with limited output capabilities (like mobile phones and small household controls), allowing the interaction techniques to be used by a variety of device types. It investigates tactile and interactive light displays in greater detail, as these are not as well understood as audio displays. Experiments 1 and 2 explored tactile feedback for gesture systems, comparing an ultrasound haptic display to wearable tactile displays at different body locations and investigating feedback designs. These experiments found that tactile feedback improves the user experience of gesturing by reassuring users that their movements are being sensed. Experiment 3 investigated interactive light displays for gesture systems, finding this novel display type effective for giving feedback and presenting information. It also found that interactive light feedback is enhanced by audio and tactile feedback. These feedback modalities were then used alongside audio feedback in two interaction techniques for addressing gesture systems: sensor strength feedback and rhythmic gestures. Sensor strength feedback is multimodal feedback that tells users how well they can be sensed, encouraging them to find where to gesture through active exploration. Experiment 4 found that they can do this with 51mm accuracy, with combinations of audio and interactive light feedback leading to the best performance. Rhythmic gestures are continuously repeated gesture movements which can be used to direct input. Experiment 5 investigated the usability of this technique, finding that users can match rhythmic gestures well and with ease. Finally, these interaction techniques were combined, resulting in a new single interaction for addressing gesture systems. Using this interaction, users could direct their input with rhythmic gestures while using the sensor strength feedback to find a good location for addressing the system. Experiment 6 studied the effectiveness and usability of this technique, as well as the design space for combining the two types of feedback. It found that this interaction was successful, with users matching 99.9% of rhythmic gestures, with 80mm accuracy from target points. The findings show that gesture systems could successfully use this interaction technique to allow users to address them. Novel design recommendations for using rhythmic gestures and sensor strength feedback were created, informed by the experiment findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Ambiente (Ordenamento do Território), 5 de Abril de 2013, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências Agrárias (Reprodução Animal), 26 de Junho de 2013, Universidade dos Açores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Texto completo em atas de encontros científicos internacionais com arbitragem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technologies such as automobiles or mobile phones allow us to perform beyond our physical capabilities and travel faster or communicate over long distances. Technologies such as computers and calculators can also help us perform beyond our mental capabilities by storing and manipulating information that we would be unable to process or remember. In recent years there has been a growing interest in assistive technology for cognition (ATC) which can help people compensate for cognitive impairments. The aim of this thesis was to investigate ATC for memory to help people with memory difficulties which impacts independent functioning during everyday life. Chapter one argues that using both neuropsychological and human computing interaction theory and approaches is crucial when developing and researching ATC. Chapter two describes a systematic review and meta-analysis of studies which tested technology to aid memory for groups with ABI, stroke or degenerative disease. Good evidence was found supporting the efficacy of prompting devices which remind the user about a future intention at a set time. Chapter three looks at the prevalence of technologies and memory aids in current use by people with ABI and dementia and the factors that predicted this use. Pre-morbid use of technology, current use of non-tech aids and strategies and age (ABI group only) were the best predictors of this use. Based on the results, chapter four focuses on mobile phone based reminders for people with ABI. Focus groups were held with people with memory impairments after ABI and ABI caregivers (N=12) which discussed the barriers to uptake of mobile phone based reminding. Thematic analysis revealed six key themes that impact uptake of reminder apps; Perceived Need, Social Acceptability, Experience/Expectation, Desired Content and Functions, Cognitive Accessibility and Sensory/Motor Accessibility. The Perceived need theme described the difficulties with insight, motivation and memory which can prevent people from initially setting reminders on a smartphone. Chapter five investigates the efficacy and acceptability of unsolicited prompts (UPs) from a smartphone app (ForgetMeNot) to encourage people with ABI to set reminders. A single-case experimental design study evaluated use of the app over four weeks by three people with severe ABI living in a post-acute rehabilitation hospital. When six UPs were presented through the day from ForgetMeNot, daily reminder-setting and daily memory task completion increased compared to when using the app without the UPs. Chapter six investigates another barrier from chapter 4 – cognitive and sensory accessibility. A study is reported which shows that an app with ‘decision tree’ interface design (ApplTree) leads to more accurate reminder setting performance with no compromise of speed or independence (amount of guidance required) for people with ABI (n=14) compared to a calendar based interface. Chapter seven investigates the efficacy of a wearable reminding device (smartwatch) as a tool for delivering reminders set on a smartphone. Four community dwelling participants with memory difficulties following ABI were included in an ABA single case experimental design study. Three of the participants successfully used the smartwatch throughout the intervention weeks and these participants gave positive usability ratings. Two participants showed improved memory performance when using the smartwatch and all participants had marked decline in memory performance when the technology was removed. Chapter eight is a discussion which highlights the implications of these results for clinicians, researchers and designers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The change in the economic world and the emergence of Internet as a tool for communication and integration among the markets have forced organizations to adopt a different structure, process-oriented with a focus on information management. Thus, information technology has gained prominence in the organizational context, increasing its complexity and range of services provided by this function. Moreover, outsourcing has become an important model for flexible corporate structure, helping organizations to achieve better results when carrying out their activities and processes and be more competitive. To make the IT outsourcing, it is necessary to follow certain steps that range from strategic assessment to the management of outsourced service. Such steps can influence the form of contracting services, varying the types of service providers and contractors. Thus, the study aimed to identify how this IT outsourcing process influences the use of models for contracting services. For this, a study was conducted in multiple cases study involving two companies in Rio Grande do Norte State, specifically the health sector. Data collection was carried out with the CIOs of the companies surveyed through semi-structured interviews. According to the results obtained, it was found that the outsourcing process more structured influences the use of a more advanced contracting model. However, there are features found in these steps carrying more clearly this influence, as the goals pursued by outsourcing, the criteria used in selecting the supplier, a contract negotiation, how to transition services and the use of methods management, but can vary depending on the level of maturity in the relationship of the companies examined. Moreover, it was found that the use of contracting model may also influence how it is developed the IT outsourcing process, requiring or not its more formalized and organization

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a smart wireless wristband is proposed. The potential of innovative gesture based interactivity with connected lighting solutions is reviewed. The solution is intended to offer numerous benefits, in terms of ease of use, and enhanced dynamic interactive functionality. A comparative analysis will be carried out between this work and existing solutions. The evolution of lighting and gesture controls will be discussed and an overview of alternative applications will be provided, as part of the critical analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo exploratorio estudia al movimiento político Mesa de la Unidad Democrática (MUD), creada con el fin de oponerse la Gobierno socialista existente en venezuela. La crítica que este documento realiza, parte desde el punto de vista de la Ciencia de la Complejidad. Algunos conceptos clave de sistemas complejos han sido utilizados para explicar el funcionamiento y organización de la MUD, esto con el objetivo de generar un diagnóstico integral de los problemas que enfrenta, y evidenciar las nuevas percepciones sobre comportamientos perjudiciales que el partido tiene actualmente. Con el enfoque de la complejidad se pretende ayudar a comprender mejor el contexto que enmarca al partido y, para, finalmente aportar una serie de soluciones a los problemas de cohesión que presen

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Ph.D. Thesis concerns the design and characterisation of functional electrochemical interfaces in organic electronic devices for bioelectronic applications. The Thesis is structured as follows: Chapter I – Technological context that has inspired the research, introduction to Organic Bioelectronics and literature review concerning Organic Electrochemical Transistors (OECTs) for sensing applications. Chapter II – Working principle of an all-polymeric OECT and operando microscopic characterization using scanning electrochemical techniques. Chapter III – Dopamine detection with all-polymeric OECT sensors. Development of a potentiodynamic approach to address selectivity issues in the presence of interfering species and design of a needle-type, sub-micrometric OECT sensor for spatially resolved detection of biological Dopamine concentrations. Chapter IV – Development of an OECT pH sensor. Characterization of the electrochemical transducer and functionalization of the OECT gate electrode with the sensing material. Potentiodynamic and potentiostatic operation modalities are explored and the sensing performances are assessed in both cases. The final device is realized on a flexible substrate and tested in Artificial Sweat. Chapter V – Study of two-terminal, electrochemically gated sensors inspired by the OECT configuration. Design and characterization of novel functional materials showing a potentiometric transduction of the chemical signal that can be exploited in the realization of electrochemical sensors with simplified geometry for wearable applications. Chapter VI – Conclusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gait analysis allows to characterize motor function, highlighting deviations from normal motor behavior related to an underlying pathology. The widespread use of wearable inertial sensors has opened the way to the evaluation of ecological gait, and a variety of methodological approaches and algorithms have been proposed for the characterization of gait from inertial measures (e.g. for temporal parameters, motor stability and variability, specific pathological alterations). However, no comparative analysis of their performance (i.e. accuracy, repeatability) was available yet, in particular, analysing how this performance is affected by extrinsic (i.e. sensor location, computational approach, analysed variable, testing environmental constraints) and intrinsic (i.e. functional alterations resulting from pathology) factors. The aim of the present project was to comparatively analyze the influence of intrinsic and extrinsic factors on the performance of the numerous algorithms proposed in the literature for the quantification of specific characteristics (i.e. timing, variability/stability) and alterations (i.e. freezing) of gait. Considering extrinsic factors, the influence of sensor location, analyzed variable, and computational approach on the performance of a selection of gait segmentation algorithms from a literature review was analysed in different environmental conditions (e.g. solid ground, sand, in water). Moreover, the influence of altered environmental conditions (i.e. in water) was analyzed as referred to the minimum number of stride necessary to obtain reliable estimates of gait variability and stability metrics, integrating what already available in the literature for over ground gait in healthy subjects. Considering intrinsic factors, the influence of specific pathological conditions (i.e. Parkinson’s Disease) was analyzed as affecting the performance of segmentation algorithms, with and without freezing. Finally, the analysis of the performance of algorithms for the detection of gait freezing showed how results depend on the domain of implementation and IMU position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent years observed massive growth in wearable technology, everything can be smart: phones, watches, glasses, shirts, etc. These technologies are prevalent in various fields: from wellness/sports/fitness to the healthcare domain. The spread of this phenomenon led the World-Health-Organization to define the term 'mHealth' as "medical and public health practice supported by mobile devices, such as mobile phones, patient monitoring devices, personal digital assistants, and other wireless devices". Furthermore, mHealth solutions are suitable to perform real-time wearable Biofeedback (BF) systems: sensors in the body area network connected to a processing unit (smartphone) and a feedback device (loudspeaker) to measure human functions and return them to the user as (bio)feedback signal. During the COVID-19 pandemic, this transformation of the healthcare system has been dramatically accelerated by new clinical demands, including the need to prevent hospital surges and to assure continuity of clinical care services, allowing pervasive healthcare. Never as of today, we can say that the integration of mHealth technologies will be the basis of this new era of clinical practice. In this scenario, this PhD thesis's primary goal is to investigate new and innovative mHealth solutions for the Assessment and Rehabilitation of different neuromotor functions and diseases. For the clinical assessment, there is the need to overcome the limitations of subjective clinical scales. Creating new pervasive and self-administrable mHealth solutions, this thesis investigates the possibility of employing innovative systems for objective clinical evaluation. For rehabilitation, we explored the clinical feasibility and effectiveness of mHealth systems. In particular, we developed innovative mHealth solutions with BF capability to allow tailored rehabilitation. The main goal that a mHealth-system should have is improving the person's quality of life, increasing or maintaining his autonomy and independence. To this end, inclusive design principles might be crucial, next to the technical and technological ones, to improve mHealth-systems usability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La ricerca si focalizza sul rapporto tra tecnologie abilitanti e corpo umano. La miniaturizzazione delle tecnologie, unita alla loro maggiore diffusione negli ambienti, porta ad interrogarsi sull’efficacia dell’integrazione di esse con corpo e attività ad esso connesse. Il contesto problematico della ricerca riguarda i dispositivi indossabili e il progetto di soluzioni destinate a risolvere inediti bisogni o potenziare i sensi umani. La letteratura scientifica e i casi studio circoscrivono il piede come efficace piattaforma per la sperimentazione di interfacce aptiche di comunicazione uomo/macchina, atte a connettere il corpo con informazioni referenziate all’ambiente. Il piede, elemento motorio duplice e simmetrico, ha un’elevata qualità percettiva ed è morfologicamente adeguato all’applicazione di tecnologie emergenti. La posizione di soglia, tra spazio e corpo, consente la raccolta di stimoli da entrambe le aree. La bibliografia evidenzia quanto la pressione, rispetto alla vibrazione, sia preferibile nella comunicazione aptica in quanto componente naturale dei linguaggi relazionali del corpo. Dall’analisi multidisciplinare emerge infine l’opportunità di sviluppo del ritmo come componente strutturale dei messaggi. I legami relazionali tra ritmo, corpo e comportamenti umani sono evidenti in molteplici meccanismi: trascinamento ritmico, mimesi ritmica, sincronia. La messa in relazione di piede, pressione e ritmo diventa affordance dello spazio, capace di suggerire, enfatizzare o attivare determinati comportamenti. L’unione di questi elementi è qui definita ritmica podotattile ed esplicitata nella tesi della descrizione delle sue caratteristiche, dalla circoscrizione di campi e azioni applicative e dalla raccolta dati sui test effettuati con i prototipi costruiti. Le analisi quantitative e qualitative dei dati di lettura del movimento e delle emozioni dimostrano quanto l’utilizzo di un linguaggio ritmico aptico nel piede esprima elevate potenzialità di integrazione con il corpo nel rispetto del comfort e dell’equilibrio attentivo nei flussi di azione preesistenti. I risultati aprono riflessioni su nuove applicazioni progettuali nel campo museale, lavorativo e urbano.