828 resultados para wavelength-division multiplexing (WDM)
Resumo:
This paper presents a theoretical model developed for estimating the power, the optical signal to noise ratio and the number of generated carriers in a comb generator, having as a reference the minimum optical signal do noise ratio at the receiver input, for a given fiber link. Based on the recirculating frequency shifting technique, the generator relies on the use of coherent and orthogonal multi-carriers (Coherent-WDM) that makes use of a single laser source (seed) for feeding high capacity (above 100 Gb/s) systems. The theoretical model has been validated by an experimental demonstration, where 23 comb lines with an optical signal to noise ratio ranging from 25 to 33 dB, in a spectral window of similar to 3.5 nm, are obtained.
Resumo:
We propose a new all-optical, all-fibre scheme for conversion of time-division multiplexed to wavelength-division multiplexed signals using cross-phase modulation with triangular pulses. Partial signal regeneration using this technique is also demonstrated.
Resumo:
The impact of hybrid erbium-doped fiber amplifier (EDFA)/Raman amplification on a spectrally efficient coherent-wavelength-division-multiplexed (CoWDM) optical communication system is experimentally studied and modeled. Simulations suggested that 23-dB Raman gain over an unrepeatered span of 124 km single-mode fiber would allow a decrease of the mean input power of ~6 dB for a fixed bit-error rate (BER). Experimentally we demonstrated 1.2-dB Q-factor improvement for a 2-Tb/s seven-band CoWDM with backward Raman amplification. The system delivered an optical signal-to-noise ratio of 35 dB at the output of the receiver preamplifier providing a worst-case BER of 2 × 10 -6 over 49 subcarriers at 42.8 Gbaud, leaving a system margin (in terms of Q -factor) of ~4 dB from the forward-error correction threshold.
Resumo:
Future optical networks will require the implementation of very high capacity (and therefore spectral efficient) technologies. Multi-carrier systems, such as Orthogonal Frequency Division Multiplexing (OFDM) and Coherent WDM (CoWDM), are promising candidates. In this paper, we present analytical, numerical, and experimental investigations of the impact of the relative phases between optical subcarriers of CoWDM systems, as well as the effect that the number of independently modulated subcarriers can have on the performance. We numerically demonstrate a five-subcarrier and three-subcarrier 10-GBd CoWDM system with direct detected amplitude shift keying (ASK) and differentially/coherently detected (D) phase shift keying (PSK). The simulation results are compared with experimental measurements of a 32-Gbit/s DPSK CoWDM system in two configurations. The first configuration was a practical 3-modulator array where all three subcarriers were independently modulated, the second configuration being a traditional 2-modulator odd/even configuration, where only odd and even subcarriers were independently modulated. Simulation and experimental results both indicate that the independent modulation implementation has a greater dependency on the relative phases between subcarriers, with a stronger penalty for the center subcarrier than the odd/even modulation scheme.
Resumo:
We examine the correlations between the parameters of ultra-narrow off-centred filtering and pulse width on the performance of a wavelength paired Nx40Gbit/s DWDM transmission, consisting of carrier suppressed return-to-zero signal with 0.64 bit/s/Hz (without polarization-division multiplexing) spectral efficiency.
Resumo:
We propose a new all-optical, all-fibre scheme for conversion of time-division multiplexed to wavelength-division multiplexed signals using cross-phase modulation with triangular pulses. Partial signal regeneration using this technique is also demonstrated.
Resumo:
Simulated annealing technique is used to improve the performance of fiber Bragg grating (FBG) sensors in a wavelength-division-multiplexed network. Experiments demonstrated strain detection accuracy of ̃2.5 με when the spectrums of FBGs are fully or partially overlapped.
Resumo:
We experimentally demonstrate a Raman-Assisted Fibre Optical Parametric Amplifier (RA-FOPA) with 20dB net gain using wavelength division multiplexed signals. We report amplification of 10×58Gb/s 100GHz-spaced QPSK signals and show that by appropriate tuning of the parametric pump power and frequency, gain improvement of up to 5dB can be achieved for the RA-FOPA compared with combined individual contributions from the parametric and Raman pumps. We compare the RAFOPA with an equivalent-gain conventional FOPA and find that four-wave mixing crosstalk is substantially reduced by up to 5.8 ± 0.4dB using the RA-FOPA. Worst-case performance penalty of the RA-FOPA is found to be only 1.0 ± 0.2dB over all measured OSNRs, frequencies and input powers, making it an attractive proposal for future communications systems.
Resumo:
We examine the correlations between the parameters of ultra-narrow off-centred filtering and pulse width on the performance of a wavelength paired Nx40Gbit/s DWDM transmission, consisting of carrier suppressed return-to-zero signal with 0.64 bit/s/Hz (without polarization-division multiplexing) spectral efficiency. © 2004 Optical Society of America.
Resumo:
The first demonstration of a directly modulated microring laser array is presented for on-off keyed, wavelength- division- multiplexed fiber-optic data transmission. GaInAsP-InP microring resonators oscillating at separate wavelengths in the 1.5-μm band are vertically coupled to a common passive waveguide bus, which is fabricated on the reverse side of the InP membrane. Two microrings defined with radii for a wavelength channel separation of 6 nm have been assessed for both individual and simultaneous operation. Negligible power penalty (<0.2 dB) is observed for wavelength-division-multiplexed operation with and without transmission over a 25-km fiber span in a manner which indicates low crosstalk between the integrated sources. A device area of less than 0.12 mm2 per microring on a common passive bus allows a highly scalable solution for short-reach wavelength-multiplexed links. © 2008 IEEE.
Resumo:
Based on a comprehensive theoretical optical orthogonal frequency division multiplexing (OOFDM) system model rigorously verified by comparing numerical results with end-to-end real-time experimental measurements at 11.25Gb/s, detailed explorations are undertaken, for the first time, of the impacts of various physical factors on the OOFDM system performance over directly modulated DFB laser (DML)-based, intensity modulation and direct detection (IMDD), single-mode fibre (SMF) systems without in-line optical amplification and chromatic dispersion compensation. It is shown that the low extinction ratio (ER) of the DML modulated OOFDM signal is the predominant factor limiting the maximum achievable optical power budget, and the subcarrier intermixing effect associated with square-law photon detection in the receiver reduces the optical power budget by at least 1dB. Results also indicate that, immediately after the DML in the transmitter, the insertion of a 0.02nm bandwidth optical Gaussian bandpass filter with a 0.01nm wavelength offset with respect to the optical carrier wavelength can enhance the OOFDM signal ER by approximately 1.24dB, thus resulting in a 7dB optical power budget improvement at a total channel BER of 1 × 10(-3).
Resumo:
We present a novel reference compensation method for eliminating environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating (FBG) sensors. By employing a shielded wavelength-division-multiplexed reference FBG in the system the environmental noise is mea, sured from the reference channel, and then subtracted from the demodulation result of each sensor channel. An approximate 40 dB reduction of the environmental noise has been experimentally achieved over a frequency range from 20 Hz to 2 kHz. This method is also suitable for the elimination of broadband environmental noise. The corresponding FBG sensor array system proposed in this paper has shown a wave-length resolution of 7 x 10(-4) pm/root Hz. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Using non-identical quantum wells as the active material, a new distributed-feed back laser is fabricated with period varied Bragg grating. The full width at half maximum of 115 nm is observed in the amplified spontaneous emission spectrum of this material, which is flatter and wider than that of the identical quantum wells. Two wavelengths of 1.51 mu m and 1.53 mu m are realized under different work conditions. The side-mode suppression ratios of both wavelengths reach 40 dB. This device can be used as the light source of coarse wavelength division multiplexer communication systems.
Resumo:
A novel distribute feedback (DFB) laser which gave two different wavelengths under two distinct work conditions was fabricated. The laser consists of two Bragg gratings with different periods corresponding to wavelength spacing of 20 nm in an identical active area. When driving current was injected into one of the different sections separately, two different wavelengths at 1542.4 and 1562.5 nm were realized. The side mode suppression ratio (SMSR) of 45 dB or more both for the two Bragg wavelengths were achieved. The fabricating process of the laser was just the same as that of traditional DFB laser diode. This device can be potentially used in coarse wavelength division multiplexer (CWDM) as a promising light source and the technology idea can be used to enlarge the transmission capacity in metro area network (MAN).
Resumo:
This thesis details an experimental and simulation investigation of some novel all-optical signal processing techniques for future optical communication networks. These all-optical techniques include modulation format conversion, phase discrimination and clock recovery. The methods detailed in this thesis use the nonlinearities associated with semiconductor optical amplifiers (SOA) to manipulate signals in the optical domain. Chapter 1 provides an introduction into the work detailed in this thesis, discusses the increased demand for capacity in today’s optical fibre networks and finally explains why all-optical signal processing may be of interest for future optical networks. Chapter 2 discusses the relevant background information required to fully understand the all-optical techniques demonstrated in this thesis. Chapter 3 details some pump-probe measurement techniques used to calculate the gain and phase recovery times of a long SOA. A remarkably fast gain recovery is observed and the wavelength dependent nature of this recovery is investigated. Chapter 4 discusses the experimental demonstration of an all-optical modulation conversion technique which can convert on-off- keyed data into either duobinary or alternative mark inversion. In Chapter 5 a novel phase sensitive frequency conversion scheme capable of extracting the two orthogonal components of a quadrature phase modulated signal into two separate frequencies is demonstrated. Chapter 6 investigates a novel all-optical clock recovery technique for phase modulated optical orthogonal frequency division multiplexing superchannels and finally Chapter 7 provides a brief conclusion.