988 resultados para wave equations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electro-dynamical tethers emit waves in structured denominated Alfven wings. The Derivative Nonlineal Schrödinger Equation (DNLS) possesses the capacity to describe the propagation of circularly polarized Alfven waves of finite amplitude in cold plasmas. The DNLS equation is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In this article is presented a theoretical and numerical analysis when the growth rate of the unstable wave is next to zero considering two damping models: Landau and resistive. The DNLS equation presents a chaotic dynamics when is consider only three wave truncation. The evolution to chaos possesses three routes: hard transition, period-doubling and intermittence of type I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent “accurately” harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in “accurate” reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Padé approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Convection in the tropics is observed to involve a wide-ranging hierarchy of scales from a few kilometers to the planetary scales and also has a profound impact on short-term climate. The mechanisms responsible for this behavior present a major unsolved problem. A promising emerging approach to address these issues is cloud-resolving modeling. Here a family of numerical models is introduced specifically to model the feedback of small-scale deep convection on tropical planetary waves and tropical circulation in a highly efficient manner compatible with the approach through cloud-resolving modeling. Such a procedure is also useful for theoretical purposes. The basic idea in the approach is to use low-order truncation in the meriodonal direction through Gauss–Hermite quadrature projected onto a simple discrete radiation condition. In this fashion, the cloud-resolving modeling of equatorially trapped planetary waves reduces to the solution of a small number of purely zonal two-dimensional wave systems along a few judiciously chosen meriodonal layers that are coupled only by some additional source terms. The approach is analyzed in detail with full mathematical rigor for linearized equatorial primitive equations with source terms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive gap equations for superconductivity in coexistence with ferromagnetism. We treat singlet and triplet states With either equal spin pairing (ESP) or opposite spin pairing (OSP) states, and study the behaviour of these states as a function of exchange splitting. For the s-wave singlet state we find that our gap equations correctly reproduce the Clogston-Chandrasekhar limiting behaviour and the phase diagram of the Baltensperger-Sarma equation (excluding the FFLO region). The singlet superconducting order parameter is shown to be independent of exchange splitting at zero temperature, as is assumed in the derivation of the Clogston-Chandrasekhar limit. P-wave triplet states of the OSP type behave similarly to the singlet state as a function of exchange splitting. On the other hand, ESP triplet states show a very different behaviour. In particular, there is no Clogston-Chandrasekhar limiting and the superconducting critical temperature, T-C, is actually increased by exchange splitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the granitic Seychelles, many shores and beaches are fringed by coral reef flats which provide protection to shores from erosion by waves. The surfaces of these reef flats support a complex ecology. About 10 years ago their seaward zones were extensively covered by a rich coral growth, which reached approximately to mean low water level, but in 1998 this was largely killed by seawater warming. The resulting large expanses of dead coral skeletons in these locations are now disintegrating, and much of the subsequent modest recovery by new coral recruitment was set back by further mortalities. A mathematical model of wave energy reaching shorelines protected by coral reef flats has been applied to 14 Seychelles reefs. It is derived from equations which predict: (1) the raised water level, or wave set-up, on reef flats resulting from wave breaking, which depends upon offshore wave height and period, depth of still water over the reef flat and the reef crest profile, and (2) the decay of energy from reef edge to shoreline that is affected by width of reef flat, surface roughness, sea level rise and 'pseudo-sea level rise' created by increased depth resulting from disintegration of coral colonies. The model treats each reef as one entity, but because biota and zonation on reef flats are not homogenous, all reefs are divided into four zones. In each, cover by both living and dead biota was estimated for calculation of parameters, and then averaged to obtain input data for the model. All possible biological factors were taken into account, such as the ability of seagrass beds to grow upwards to match expected sea level rise, reduction in height of the reef flat in relation to sea level as zones of dead corals decay, and the observed 'rounding' of reef crests as erosion removes corals from those areas. Estimates were also made of all these factors for a time approximately a decade ago, representing a time before the mass coral mortality, and for approximately a decade in the future when the observed rapid state of dead coral colony disintegration is assumed to have reached an end point. Results of increased energy over the past decade explain observations of erosion in some sites in the Seychelles. Most importantly, it is estimated that the rise in energy reaching shores protected by fringing reefs will now accelerate more rapidly, such that the increase expected over the next decade will be approximately double than that seen over the past decade. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of the benchmark test are presented of comparing numerical schemes solving shock wave of M-s = 2.38 in nitrogen and argon interacting with a 43 degrees semi-apex angle cone and corresponding experiments. The benchmark test was announced in Shock Waves Vol. 12, No. 4, in which we tried to clarify the effects of viscosity and heat conductivity on shock reflection in conical flows. This paper summarizes results of ten numerical and two experimental applications. State of the art in studies regarding the shock/cone interaction is clarified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thixotropy is the characteristic of a fluid to form a gelled structure over time when it is not subjected to shearing, and to liquefy when agitated. Thixotropic fluids are commonly used in the construction industry (e.g., liquid concrete and drilling fluids), and related applications include some forms of mud flows and debris flows. This paper describes a basic study of dam break wave with thixotropic fluid. Theoretical considerations were developed based upon a kinematic wave approximation of the Saint-Venant equations down a prismatic sloping channel. A very simple thixotropic model, which predicts the basic theological trends of such fluids, was used. It describes the instantaneous state of fluid structure by a single parameter. The analytical solution of the basic flow motion and theology equations predicts three basic flow regimes depending upon the fluid properties and flow conditions, including the initial degree of jamming of the fluid (related to its time of restructuration at rest). These findings were successfully compared with systematic bentonite suspension experiments. The present work is the first theoretical analysis combining the basic principles of unsteady flow motion with a thixotropic fluid model and systematic laboratory experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding arterial distensibility has shown to be important in the pathogenesis of cardiovascular abnormalities like hypertension. It is also known that arterial pulse wave velocity (PWV) is a measure of the elasticity or stiffness of peripheral arterial blood vessels. However, it generally requires complex instrumentations to have an accurate measurement and not suited for continual monitoring. In this paper, it describes a simple and non-intrusive method to detect the cardiovascular pulse from a human wrist above the radial artery and a fingertip. The main components of this proposed method are a piezoelectric transducer and a photo-plethysmography circuitry. 5 healthy adults (4 male) with age ranging from 25 to 38 years were recruited. The timing consistency of the detected pulsations is first evaluated and compared to that obtained from a commercial electrocardiogram. Furthermore, the derived PWV is then assessed by the predicted values attained from regression equations of two previous similar studies. The results show good correlations (p < 0.05) and similarities for the former and latter respectively. The simplicity and non-invasive nature of the proposed method can be attractive for even younger or badly disturbed patients. Moreover, it can be used for prolonged monitoring for the comfort of the patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized systematic description of the Two-Wave Mixing (TWM) process in sillenite crystals allowing for arbitrary orientation of the grating vector is presented. An analytical expression for the TWM gain is obtained for the special case of plane waves in a thin crystal (|g|d«1) with large optical activity (|g|/?«1, g is the coupling constant, ? the rotatory power, d the crystal thickness). Using a two-dimensional formulation the scope of the nonlinear equations describing TWM can be extended to finite beams in arbitrary geometries and to any crystal parameters. Two promising applications of this formulation are proposed. The polarization dependence of the TWM gain is used for the flattening of Gaussian beam profiles without expanding them. The dependence of the TWM gain on the interaction length is used for the determination of the crystal orientation. Experiments carried out on Bi12GeO20 crystals of a non-standard cut are in good agreement with the results of modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shape of a plane acoustical sound-soft obstacle is detected from knowledge of the far field pattern for one time-harmonic incident field. Two methods based on solving a system of integral equations for the incoming wave and the far field pattern are investigated. Properties of the integral operators required in order to apply regularization, i.e. injectivity and denseness of the range, are proved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized systematic description of the Two-Wave Mixing (TWM) process in sillenite crystals allowing for arbitrary orientation of the grating vector is presented. An analytical expression for the TWM gain is obtained for the special case of plane waves in a thin crystal (|g|d«1) with large optical activity (|g|/?«1, g is the coupling constant, ? the rotatory power, d the crystal thickness). Using a two-dimensional formulation the scope of the nonlinear equations describing TWM can be extended to finite beams in arbitrary geometries and to any crystal parameters. Two promising applications of this formulation are proposed. The polarization dependence of the TWM gain is used for the flattening of Gaussian beam profiles without expanding them. The dependence of the TWM gain on the interaction length is used for the determination of the crystal orientation. Experiments carried out on Bi12GeO20 crystals of a non-standard cut are in good agreement with the results of modelling.