959 resultados para water levels
Resumo:
The present work evaluated several aspects of the generalized stress response [endocrine (cortisol), metabolic (glucose), hematologic (hematocrit and hemoglobin) and cellular (HSP70)] in the Amazonian warm-water fish matrinxã (Brycon amazonicus ) subjected to an acute cold shock. This species farming has been done in South America, and growth and feed conversion rates have been interesting. However, in subtropical areas of Brazil, where the water temperature can rapidly change, high rates of matrinxã mortality have been associated with abrupt decrease in the water temperature. Thus, we subjected matrinxã to a sudden cold shock by transferring the fish directly to tanks in which the water temperature was 10ºC below the initial conditions (cold shock from 28ºC to 18ºC). After 1h the fish were returned to the original tanks (28ºC). The handling associated with tank transfer was also imposed on control groups (not exposed to cold shock). While exposure to cold shock did not alter the measured physiological conditions within 1h, fish returned to the ambient condition (water at 28º C) significantly increased plasma cortisol and glucose levels. Exposure to cold shock and return to the warm water did not affect HSP70 levels. The increased plasma cortisol and glucose levels after returning the fish to warm water suggest that matrinxã requires cortisol and glucose for adaptation to increased temperature.
Resumo:
Light and water are important factors that may limit the growth and development of higher plants. The aim of this study was to evaluate photosynthetic parameters and growth in seedlings of Bertholletia excelsa and Carapa guianensis in response to pre-acclimation to full sunlight and mild water stress. I used six independent pre-acclimation treatments (0, 90 (11h15-12h45), 180 (10h30-13h30), 360 (09h00-15h00), 540 (07h30-16h30) and 720 min (06h00-18h00)) varying the time of exposure to full sunlight (PFS) during 30 days, followed by whole-day outdoor exposure for 120 days. Before PFS, the plants were kept in a greenhouse at low light levels (0.8 mol m-2 day-1). The PFS of 0 min corresponded to plants constantly kept under greenhouse conditions. From the beginning to the end of the experiment, each PFS treatment was submitted to two water regimes: moderate water stress (MWS, pre-dawn leaf water potential (ΨL) of -500 to -700 kPa) and without water stress (WWS, ΨL of -300 kPa, soil kept at field capacity). Plants under MWS received only a fraction of the amount of water applied to the well-watered ones. At the end of the 120-day-period under outdoor conditions, I evaluated light saturated photosynthesis (Amax), stomatal conductance (g s), transpiration (E) and plant growth. Both Amax and g s were higher for all plants under the PFS treatment. Stem diameter growth rate and Amax were higher for C. guianensis subjected to MWS than in well-watered plants. The contrary was true for B. excelsa. The growth of seedlings was enhanced by exposure to full sunlight for 180 minutes in both species. However, plants of B. excelsa were sensitive to moderate water stress. The higher photosynthetic rates and faster growth of C. guianensis under full sun and moderate water stress make this species a promissory candidate to be tested in reforestation programs.
Resumo:
Lipid nanoballoons integrating multiple emulsions of the type water-in-oil-in-water enclose, at least in theory, a biomimetic aqueous-core suitable for housing hydrophilic biomolecules such as proteins, peptides and bacteriophage particles. The research effort entertained in this paper reports a full statistical 23x31 factorial design study (three variables at two levels and one variable at three levels) to optimize biomimetic aqueous-core lipid nanoballoons for housing hydrophilic protein entities. The concentrations of protein, lipophilic and hydrophilic emulsifiers, and homogenization speed were set as the four independent variables, whereas the mean particle hydrodynamic size (HS), zeta potential (ZP) and polydispersity index (PI) were set as the dependent variables. The V23x31 factorial design constructed led to optimization of the higher (+1) and lower (-1) levels, with triplicate testing for the central (0) level, thus producing thirty three experiments and leading to selection of the optimized processing parameters as 0.015% (w/w) protein entity, 0.75% (w/w) lipophilic emulsifier (soybean lecithin) and 0.50% (w/w) hydrophilic emulsifier (poloxamer 188). In the present research effort, statistical optimization and production of protein derivatives encompassing full stabilization of their three-dimensional structure, has been attempted via housing said molecular entities within biomimetic aqueous-core lipid nanoballoons integrating a multiple (W/O/W) emulsion.
Resumo:
Background: Ischemic postconditioning (IPost) is a method of protecting the heart against ischemia-reperfusion (IR) injury. However, the effectiveness of IPost in cases of ischemic heart disease accompanied by co-morbidities such as hypothyroidism remains unclear. Objective: The aim of this study was to determine the effect of IPost on myocardial IR injury in hypothyroid male rats. Methods: Propylthiouracil in drinking water (500 mg/L) was administered to male rats for 21 days to induce hypothyroidism. The hearts from control and hypothyroid rats were perfused in a Langendorff apparatus and exposed to 30 min of global ischemia, followed by 120 min of reperfusion. IPost was induced immediately following ischemia. Results: Hypothyroidism and IPost significantly improved the left ventricular developed pressure (LVDP) and peak rates of positive and negative changes in left ventricular pressure (±dp/dt) during reperfusion in control rats (p < 0.05). However, IPost had no add-on effect on the recovery of LVDP and ±dp/dt in hypothyroid rats. Furthermore, hypothyroidism significantly decreased the basal NO metabolite (NOx) levels of the serum (72.5 ± 4.2 vs. 102.8 ± 3.7 μmol/L; p < 0.05) and heart (7.9 ± 1.6 vs. 18.8 ± 3.2 μmol/L; p < 0.05). Heart NOx concentration in the hypothyroid groups did not change after IR and IPost, whereas these were significantly (p < 0.05) higher and lower after IR and IPost, respectively, in the control groups. Conclusion: Hypothyroidism protects the heart from IR injury, which may be due to a decrease in basal nitric oxide (NO) levels in the serum and heart and a decrease in NO after IR. IPost did not decrease the NO level and did not provide further cardioprotection in the hypothyroid group.
Resumo:
Using three columns of different depths (1.10m, 8.40m and 10.40m), we investigated the possibility of Biomphalaria glabrata moving towards deep regions. In the 1.10m column, we noted that locomotion can occur in two manners: 1) when the foot is in contact with the substrate: a) sliding descent; b) sliding ascent; c) creeping descent; d) creeping ascent, 2) when the foot is not in contact with the substrate: a) sudden descent without emission of air bules; b) sudden descent with emission of air bules; c) sudden ascent. In the 8.40m column containing food on the bottom (experimental group), the snails remained longer at this depth when compared to those of the group which received no food (control). The sliding behavior was characteristic of locomotion occurring at 0 to 1m both in upward and downward directions. Creeping behavior was typical for the ascent of the snails that reached deeper levels. When the snails were creeping, the shell remained hanging as if it were heavier, a fact that may have been due to water entering the pulmonary chamber. In the 10.40m column, the snails slid downward to a depth of 4m or descended suddenly all the way to the bottom. Ascent occurred by creeping from the bottom to the surface. In the 8.40m and 10.40m columns, copulation, feeding and oviposition occurred at the deepest levels.
Resumo:
BACKGROUND: Depending on its magnitude, lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal, renal tubular, and renal hemodynamic responses, thereby mimicking the renal responses observed in clinical conditions characterized by a low effective arterial volume such as congestive heart failure. Our objective was to evaluate the impact of angiotensin II receptor blockade with candesartan on the renal hemodynamic and urinary excretory responses to a progressive orthostatic stress in normal subjects. METHODS: Twenty healthy men were submitted to three levels of LBNP (0, -10, and -20 mbar or 0, -7.5, and -15 mm Hg) for 1 hour according to a crossover design with a minimum of 2 days between each level of LBNP. Ten subjects were randomly allocated to receive a placebo and ten others were treated with candesartan 16 mg orally for 10 days before and during the three levels of LBNP. Systemic and renal hemodynamics, renal sodium excretions, and the hormonal response were measured hourly before, during, and for 2 hours after LBNP. RESULTS: During placebo, LBNP induced no change in systemic and renal hemodynamics, but sodium excretion decreased dose dependently with higher levels of LBNP. At -20 mbar, cumulative 3-hour sodium balance was negative at -2.3 +/- 2.3 mmol (mean +/- SEM). With candesartan, mean blood pressure decreased (76 +/- 1 mm Hg vs. 83 +/- 3 mm Hg, candesartan vs. placebo, P < 0.05) and renal plasma flow increased (858 +/- 52 mL/min vs. 639 +/- 36 mL/min, candesartan vs. placebo, P < 0.05). Glomerular filtration rate (GFR) was not significantly higher with candesartan (127 +/- 7 mL/min in placebo vs. 144 +/- 12 mL/min in candesartan). No significant decrease in sodium and water excretion was found during LBNP in candesartan-treated subjects. At -20 mbar, the 3-hour cumulative sodium excretion was + 4.6 +/- 1.4 mmol in the candesartan group (P= 0.02 vs. placebo). CONCLUSION: Selective blockade of angiotensin II type 1 (AT1) receptors with candesartan increases renal blood flow and prevents the antinatriuresis during sustained lower body negative pressure despite a modest decrease in blood pressure. These results thus provide interesting insights into potential benefits of AT1 receptor blockade in sodium-retaining states such as congestive heart failure.
Resumo:
This paper examines the results of spatial (microgeographical) water contact/schistosomiasis studies in two African (Egyptian and Kenyan) and one Brazilian communities. All three studies used traditional cartographic and statistical methods but one of them emploeyd also GIS (geographical information systems) tools. The advantage of GIS and their potential role in schistosomiasis control are briefly described. The three cases revealed considerable variation in the spatial distribution of water contact, transmission parameters and infection levels at the household and individual levels. All studies showed considerable variation in the prevalence and intensity of infection between households. They also show a variable influence of distance on water contact behavior associated with type of activity, age, sex, socioeconomic level, perception of water quality, season and availability of water in the home. Water contact behavior and schistosomiasis were evaluated in the Brazilian village of Nova União within the context of water sharing between household and age/sex groups. Recommendations are made for further spatial studies on the transmission and control of schistosomiasis.
Resumo:
In this paper we address the complexity of the analysis of water use in relation to the issue of sustainability. In fact, the flows of water in our planet represent a complex reality which can be studied using many different perceptions and narratives referring to different scales and dimensions of analysis. For this reason, a quantitative analysis of water use has to be based on analytical methods that are semantically open: they must be able to define what we mean with the term “water” when crossing different scales of analysis. We propose here a definition of water as a resource that deal with the many services it provides to humans and ecosystems. WE argue that water can fulfil so many of them since the element has many characteristics that allow for the resource to be labelled with different attributes, depending on the end use –such as drinkable. Since the services for humans and the functions for ecosystems associated with water flows are defined on different scales but still interconnected it is necessary to organize our assessment of water use across different hierarchical levels. In order to do so we define how to approach the study of water use in the Societal Metabolism, by proposing the Water Metabolism, tganized in three levels: societal level, ecosystem level and global level. The possible end uses we distinguish for the society are: personal/physiological use, household use, economic use. Organizing the study of “water use” across all these levels increases the usefulness of the quantitative analysis and the possibilities of finding relevant and comparable results. To achieve this result, we adapted a method developed to deal with multi-level, multi-scale analysis - the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach - to the analysis of water metabolism. In this paper, we discuss the peculiar analytical identity that “water” shows within multi-scale metabolic studies: water represents a flow-element when considering the metabolism of social systems (at a small scale, when describing the water metabolism inside the society) and a fund-element when considering the metabolism o ecosystems (at a larger scale when describing the water metabolism outside the society). The theoretical analysis is illustrated using two case which characterize the metabolic patterns regarding water use of a productive system in Catalonia and a water management policy in Andarax River Basin in Andalusia.
Resumo:
How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration.
Resumo:
Cemeteries with many water-filled containers, flowers, sources of human blood, and shade are favorable urban habitats for the proliferation of Aedes aegypti, a vector of yellow fever and dengue. A total of 22,956 containers was examined in the five cemeteries of the city of Buenos Aires, Argentina. The vector was found in four cemeteries that showed an average infestation level of 5.5% (617 positive out of 11,196 water-filled containers). The four cemeteries positive for Ae. aegypti showed significantly different (p<0.01) infestation levels. Vegetation cover and percentage of infestation were significantly correlated (p<0.01), but neither cemetery area nor number of available containers were significantly related to the proportion of positive vases. Our results suggest that the cemeteries of Buenos Aires represent a gradient of habitat favorableness for this vector species, some of which may act as foci for its proliferation and dispersal.
Resumo:
Small mammals are found naturally infected by Schistosoma mansoni, becoming a confounding factor for control programs of schistosomiasis in endemic areas. The aims of this study were: to investigate the infection rates by S. mansoni on the water-rat Nectomys squamipes during four years in endemic areas of Sumidouro, state of Rio de Janeiro, using mark-recapture technique; to compare two diagnostic methods for schistosomiasis; and to evaluate the effects of the chemotherapy in the human infected population on the rodent infection rates. The rodent infection rates of S. mansoni increased when rodent population sizes were lower. Coprology and serology results presented the same trends along time and were correlated. Serology could detect recent infection, including the false negatives in the coprology. The chemotherapy in the humans could not interrupt the rodent infection. Rodents can increase the schistosomiaisis transmission where it already exists, they probably maintain the transmission cycle in the nature and can be considered as biological indicators of the transmission sites of this parasite since they are highly susceptible to infection. The water-rats may present different levels of importance in the transmission dynamics of S. mansoni infection cycle for each area, and can be considered important wild-reservoirs of this human disease.
Resumo:
Neuroimaging with diffusion-weighted imaging is routinely used for clinical diagnosis/prognosis. Its quantitative parameter, the apparent diffusion coefficient (ADC), is thought to reflect water mobility in brain tissues. After injury, reduced ADC values are thought to be secondary to decreases in the extracellular space caused by cell swelling. However, the physiological mechanisms associated with such changes remain uncertain. Aquaporins (AQPs) facilitate water diffusion through the plasma membrane and provide a unique opportunity to examine the molecular mechanisms underlying water mobility. Because of this critical role and the recognition that brain AQP4 is distributed within astrocytic cell membranes, we hypothesized that AQP4 contributes to the regulation of water diffusion and variations in its expression would alter ADC values in normal brain. Using RNA interference in the rodent brain, we acutely knocked down AQP4 expression and observed that a 27% AQP4-specific silencing induced a 50% decrease in ADC values, without modification of tissue histology. Our results demonstrate that ADC values in normal brain are modulated by astrocytic AQP4. These findings have major clinical relevance as they suggest that imaging changes seen in acute neurologic disorders such as stroke and trauma are in part due to changes in tissue AQP4 levels.
Resumo:
BACKGROUND Evidence associating exposure to water disinfection by-products with reduced birth weight and altered duration of gestation remains inconclusive. OBJECTIVE We assessed exposure to trihalomethanes (THMs) during pregnancy through different water uses and evaluated the association with birth weight, small for gestational age (SGA), low birth weight (LBW), and preterm delivery. METHODS Mother-child cohorts set up in five Spanish areas during the years 2000-2008 contributed data on water ingestion, showering, bathing, and swimming in pools. We ascertained residential THM levels during pregnancy periods through ad hoc sampling campaigns (828 measurements) and regulatory data (264 measurements), which were modeled and combined with personal water use and uptake factors to estimate personal uptake. We defined outcomes following standard definitions and included 2,158 newborns in the analysis. RESULTS Median residential THM ranged from 5.9 μg/L (Valencia) to 114.7 μg/L (Sabadell), and speciation differed across areas. We estimated that 89% of residential chloroform and 96% of brominated THM uptakes were from showering/bathing. The estimated change of birth weight for a 10% increase in residential uptake was -0.45 g (95% confidence interval: -1.36, 0.45 g) for chloroform and 0.16 g (-1.38, 1.70 g) for brominated THMs. Overall, THMs were not associated with SGA, LBW, or preterm delivery. CONCLUSIONS Despite the high THM levels in some areas and the extensive exposure assessment, results suggest that residential THM exposure during pregnancy driven by inhalation and dermal contact routes is not associated with birth weight, SGA, LBW, or preterm delivery in Spain.
Resumo:
Previously published scientific papers have reported a negative correlation between drinking water hardness and cardiovascular mortality. Some ecologic and case-control studies suggest the protective effect of calcium and magnesium concentration in drinking water. In this article we present an analysis of this protective relationship in 538 municipalities of Comunidad Valenciana (Spain) from 1991-1998. We used the Spanish version of the Rapid Inquiry Facility (RIF) developed under the European Environment and Health Information System (EUROHEIS) research project. The strategy of analysis used in our study conforms to the exploratory nature of the RIF that is used as a tool to obtain quick and flexible insight into epidemiologic surveillance problems. This article describes the use of the RIF to explore possible associations between disease indicators and environmental factors. We used exposure analysis to assess the effect of both protective factors--calcium and magnesium--on mortality from cerebrovascular (ICD-9 430-438) and ischemic heart (ICD-9 410-414) diseases. This study provides statistical evidence of the relationship between mortality from cardiovascular diseases and hardness of drinking water. This relationship is stronger in cerebrovascular disease than in ischemic heart disease, is more pronounced for women than for men, and is more apparent with magnesium than with calcium concentration levels. Nevertheless, the protective nature of these two factors is not clearly established. Our results suggest the possibility of protectiveness but cannot be claimed as conclusive. The weak effects of these covariates make it difficult to separate them from the influence of socioeconomic and environmental factors. We have also performed disease mapping of standardized mortality ratios to detect clusters of municipalities with high risk. Further standardization by levels of calcium and magnesium in drinking water shows changes in the maps when we remove the effect of these covariates.
Resumo:
Tillage and manure application practices significantly impact surface and ground water quality in Iowa and other Midwestern states. Tillage and manure application that incorporates residue and disturbs soil result in higher levels of soil erosion and surface runoff. Phosphorus and sediment loading are closely linked to the increase in soil erosion and surface water runoff. Manure application (i.e., injection or incorporation) reduces surface residue cover, which can worsen soil erosion regardless of the tillage management system being used. An integrated system approach to manure and tillage management is critical to ensure effi cient nutrient use and improvement of soil and water quality. This approach, however, requires changes in manure application technology and tillage system management to ensure the success of an integrated