917 resultados para wastewater pumping station
Resumo:
In the present study, a high-surface area activated carbon was prepared by chemical activation of lemon peel with H3PO4 as the active agent. Then, the adsorption behavior of Malachite green dye and Pb(II) ions on the produced activated carbon was studied. Batch process was employed for sorption kinetics and equilibrium studies. Experimental data were ï¬tted to various isotherm models. According to the Langmuir model, the maximum adsorption capacities of Malachite green dye and Pb(II) ions were found to be 66.67 and 90.91 mg g-1, respectively, at room temperature. Kinetic studies showed the adsorption process followed a pseudo second-order rate model. The sorption kinetics were controlled by intra-particle diffusion. The results indicated that the produced activated carbon can be economically and effectively used as an adsorbent for the removal of Malachite green dye and Pb(II) ions from wastewaters.
Resumo:
The UPM-Kymmene Oyj Pietarsaari pulp and paper Mill biological wastewater treatment plant was built in the 1980's and the plant has been in use ever since. During the past years there have been problems with deviations. The wastewater treatment plant needs update, especially the aeration basin, where the old surface aerators cannot produce enough mixing and indroduce oxygen enough to the wastewater. In this thesis how extra aeration with oxygen affects the wastewater treatment plant effluent was studied. In the literature part the main focus is in aeration devices, which can be used in biological wastewater treatment. The target is to compare different kind of aerators, which are suitable for pulp and paper wastewater treatment. Studies show, that EDI-aerators are commonly used and also most suitable. In the experimental part, the focus is on the Pietarsaari Mills wastewater treatment plant and oxygen aeration during autumn 2008. This thesis presents the results of the trial run. Studies show, that extra oxygen devices can produce lot a of mixing and the oxygenation capacity was more than what the micro-organisms needed. The effect on sludge quality could not been seen during the trial runs.
Resumo:
Laboratories consume great amounts of hazardous chemicals substances and consequently generate wastewater containing them, for example formaldehyde. This substance is widely utilized to preserve biological samples generating many liters of this residue every year. The present work proposes the use of the photo-Fenton process to treat formaldehyde wastewater using sunlight irradiation. Some aspects were investigated such as the iron source, sample and hydrogen peroxide concentration and also the use of stirred systems. The use of ferrioxalate (0.5 mmol L-1) improved the efficiency of the process in relation to the use of iron nitrate, while at least 1.0 mol L-1 H2O2 is necessary to treat the sample of the 500 mg C L-1. Under these conditions, every formaldehyde detectable was degradeted and 89% of the dissolved organic carbon was removed in two hours of exposure to sunlight. These results are satisfaction considerate for São Paulo State Environmental Agency.
Resumo:
Efficient designs and operations of water and wastewater treatment systems are largely based on mathematical calculations. This even applies to training in the treatment systems. Therefore, it is necessary that calculation procedures are developed and computerised a priori for such applications to ensure effectiveness. This work was aimed at developing calculation procedures for gas stripping, depth filtration, ion exchange, chemical precipitation, and ozonation wastewater treatment technologies to include them in ED-WAVE, a portable computer based tool used in design, operations and training in wastewater treatment. The work involved a comprehensive online and offline study of research work and literature, and application of practical case studies to generate ED-WAVE compatible representations of the treatment technologies which were then uploaded into the tool.
Resumo:
Rising population, rapid urbanisation and growing industrialisation have severely stressed water quality and its availability in Malawi. In addition, financial and institutional problems and the expanding agro industry have aggravated this problem. The situation is worsened by depleting water resources and pollution from untreated sewage and industrial effluent. The increasing scarcity of clean water calls for the need for appropriate management of available water resources. There is also demand for a training system for conceptual design and evaluation for wastewater treatment in order to build the capacity for technical service providers and environmental practitioners in the country. It is predicted that Malawi will face a water stress situation by 2025. In the city of Blantyre, this situation is aggravated by the serious pollution threat from the grossly inadequate sewage treatment capacity. This capacity is only 23.5% of the wastewater being generated presently. In addition, limited or non-existent industrial effluent treatment has contributed to the severe water quality degradation. This situation poses a threat to the ecologically fragile and sensitive receiving water courses within the city. This water is used for domestic purposes further downstream. This manuscript outlines the legal and policy framework for wastewater treatment in Malawi. The manuscript also evaluates the existing wastewater treatment systems in Blantyre. This evaluation aims at determining if the effluent levels at the municipal plants conform to existing standards and guidelines and other associated policy and regulatory frameworks. The raw material at all the three municipal plants is sewage. The typical wastewater parameters are Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS). The treatment target is BOD5, COD, and TSS reduction. Typical wastewater parameters at the wastewater treatment plant at MDW&S textile and garments factory are BOD5 and COD. The treatment target is to reduce BOD5 and COD. The manuscript further evaluates a design approach of the three municipal wastewater treatment plants in the city and the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory. This evaluation utilises case-based design and case-based reasoning principles in the ED-WAVE tool to determine if there is potential for the tool in Blantyre. The manuscript finally evaluates the technology selection process for appropriate wastewater treatment systems for the city of Blantyre. The criteria for selection of appropriate wastewater treatment systems are discussed. Decision support tools and the decision tree making process for technology selection are also discussed. Based on the treatment targets and design criteria at the eight cases evaluated in this manuscript in reference to similar cases in the ED-WAVE tool, this work confirms the practical use of case-based design and case-based reasoning principles in the ED-WAVE tool in the design and evaluation of wastewater treatment 6 systems in sub-Sahara Africa, using Blantyre, Malawi, as the case study area. After encountering a new situation, already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects. This work provides a training system for conceptual design and evaluation for wastewater treatment.
Resumo:
Aqueous extracts of several plant species have shown promising in controlling root-knot nematode, Meloidogyne incognita (Kofoid & White), one of the most limiting agents for carrot cultivation. The current study evaluated the effect of aqueous extracts from seven botanical species applied to 40, 50, 60, 70 and 80 days after sowing 'Nantes' carrots in soil infested with root-knot nematode. Three other treatments included cassava wastewater, distilled water (control), which were applied in the same periods of the extracts application, in addition to carbofuran 50G (80Kg/ha), which was applied once at 60 days after carrot sowing. Evaluations were performed at 90 days after inoculation to determine shoot and root fresh weight, as well as the diameter and the length of principal roots and the number of galls on primary and secondary roots. Plants treated with cassava wastewater, extracts of Ricinus communis L. seeds, Crotalaria juncea L. seeds, R. communis leaves + branches + fruits, Chenopodium ambrosioides L. leaves + branches + inflorescences and Azadirachta indica A. Juss. seeds showed the highest rates of total weight (root + shoot) and shoot weight. The extract of R. communis leaves + branches + fruits provides the highest total root weight and principal root diameter. Cassava wastewater and extracts of R. communis seeds provided the highest principal root weight. The extract of R. communis seeds and cassava wastewater can be considered promising for the alternative control of M. incognita.
Resumo:
The potential for enhancing the energy efficiency of industrial pumping processes is estimated to be in some cases up to 50 %. One way to define further this potential is to implement techniques in accordance to definition of best available techniques in pumping applications. These techniques are divided into three main categories: Design, control method & maintenance and distribution system. In the theory part of this thesis first the definition of best available techniques (BAT) and its applicability on pumping processes is issued. Next, the theory around pumping with different pump types is handled, the main stress being in centrifugal pumps. Other components needed in a pumping process are dealt by presenting different control methods, use of an electric motor, variable speed drive and the distribution system. Last part of the theory is about industrial pumping processes from water distribution, sewage water and power plant applications, some of which are used further on in the empirical part as example cases. For the empirical part of this study four case studies on typical pumping processes from older Master’s these were selected. Firstly the original results were analyzed by studying the distribution of energy consumption between different system components and using the definition of BAT in pumping, possible ways to improve energy efficiency were evaluated. The goal in this study was that by the achieved results it would be possible to identify the characteristic energy consumption of these and similar pumping processes. Through this data it would then be easier to focus energy efficiency actions where they might be the most applicable, both technically and economically.
Resumo:
Approximately a quarter of electrical power consumption in pulp and paper industry is used in different pumping systems. Therefore, improving pumping system efficiency is a considerable way to reduce energy consumption in different processes. Pumping of wood pulp in different consistencies is common in pulp and paper industry. Earlier, centrifugal pumps were used to pump pulp only at low consistencies, but development of MC technology has made it possible to pump medium consistency pulp. Pulp is a non-Newtonian fluid, which flow characteristics are significantly different than what of water. In this thesis is examined the energy efficiency of pumping medium consistency pulp with centrifugal pump. The factors effecting the pumping of MC pulp are presented and through case study is examined the energy efficiency of pumping in practice. With data obtained from the case study are evaluated the effects of pump rotational speed and pulp consistency on energy efficiency. Additionally, losses caused by control valve and validity of affinity laws in pulp pumping are evaluated. The results of this study can be used for demonstrating the energy consumption of MC pumping processes and finding ways to improve energy efficiency in these processes.
Resumo:
The objective of this research was to evaluate the performance of the aquatic macrophyte Eichhornia crassipes applied in situ in a slaughter house treatment system, located in the west of the Paraná state, Brazil, regarding the nutrients removal and organic matter. Moreover, it aimed to obtain data from the production, management and composting practices of the biomass generated in the system. During 11 months of macrophytes development, physic and chemical parameters were monitored and plant density was controlled by periodical removal of excess biomass, which was weekly monitored and it is expressed in kg of aquatic plant per m² covered area. The degradation of the macrophytes removed from the treatment system was evaluated at the pilot scale in eight composting piles of 0.60 m³ that underwent four different treatments and two repetitions: T1 - water hyacinth (Eichhornia crassipes); T2 - water hyacinth and swine excrement (7:1), T3 - water hyacinth, swine excrement and earth (7:1:0,67), and T4 - water hyacinth, swine excrement and cellulosic gut (7:1:0,67), for a period of 90 days. The results indicated maximum removal efficiencies of 77.2% for COD; 77.8% for BOD, 87.9% for total nitrogen, 47.5% for ammonia nitrogen and 38.9% for total phosphorus for a five-day retention time. For biomass stabilization by composting, considering the C:N ratio as an indicator of compost maturity, it was observed that treatment T4 resulted in the shortest stabilization period (60 days). No difference was verified in the biostabilization rates at 5% level by the F test.
Resumo:
A sequential batch reactor with suspended biomass and useful volume of 5 L was used in the removal of nutrients and organic matter in workbench scale under optimal conditions obtained by central composite rotational design (CCRD), with cycle time (CT) of 16 h (10.15 h, aerobic phase, and 4.35 h, anoxic phase) and carbon: nitrogen ratio (COD/NO2--N+NO3--N) equal to 6. Complete cycles (20), nitrification followed by denitrification, were evaluated to investigate the kinetic behavior of degradation of organic (COD) and nitrogenated (NH4+-N, NO2--N and NO3--N) matter present in the effluent from a bird slaughterhouse and industrial processing facility, as well as to evaluate the stability of the reactor using Shewhart control charts of individual measures. The results indicate means total inorganic nitrogen (NH4+-N+NO2- -N+NO3--N) removal of 84.32±1.59% and organic matter (COD) of 53.65±8.48% in the complete process (nitrification-denitrification) with the process under statistical control. The nitrifying activity during the aerobic phase estimated from the determination of the kinetic parameters had mean K1 and K2 values of 0.00381±0.00043 min-1 and 0.00381±0.00043 min-1, respectively. The evaluation of the kinetic behavior of the conversion of nitrogen indicated a possible reduction of CT in the anoxic phase, since removals of NO2--N and NO3--N higher than 90% were obtained with only 1 h of denitrification.
Resumo:
The high load of nitrogen present in swine wastewater is one of the biggest management challenges of the activity. The Anammox process emerges as a good alternative for biological removal of nitrogen. This study aims to acclimate sludge collected from swine effluent treatment systems to establish the Anammox process. Two sludge samples were collected at Embrapa Swine and Poultry, Concordia - SC, Brazil, one from the bottom of an inactive anaerobic pond (inoculum A) and another from an aeration tank (inoculum B). Both were acclimated until the depletion of NO3-N, being subsequently inoculated in two reactors (Reactor A - Inoculum A and Reactor B - Inoculum B). The Reactor A showed activity after 110 days of operation, while the Reactor B needed 170 days. The difference in the start-up time could be explained by the different environmental conditions to which each sludge was submitted. FISH and PCR analyses confirmed the presence of microorganisms with Anammox activity, demonstrating that the sludge of swine wastewater treatment systems is a good source of inoculum for the development of the Anammox process.
Resumo:
The effects of swine wastewater on atrazine dissipation and formation of bound residues in subtropical clay soil were investigated in this study. The experiment was carried out in laboratory, under room conditions, where samples of Rhodic Hapludox soil received 168.61 mg kg-1 of atrazine and were incubated for 60 days in the following treatments: T1 (sterilized soil + swine wastewater), T2 (sterilized soil + distilled water), T3 (Non sterilized soil + swine wastewater) and T4 (Non sterilized soil + distilled water). The extractable residues and bound residues of atrazine were extracted and analyzed by high performance liquid chromatography. The results showed no effect of swine wastewater on atrazine dissipation. However, the addition of swine wastewater favored the increase of bound residues, which can increase the persistence of atrazine in the environment and reduce its bioavailability.
Resumo:
In this study, it was adjusted a mathematical model to measure the effect of electric motor efficiency on pumping system costs for irrigation on the tariff structure of conventional electricity and green horo-seasonal , and also to calculate the recovery period of the invested capital in higher efficiency equipment. Then, it was applied to a center pivot irrigation system in two options of electric motor efficiency, 92,6% (standard line) and 94,3% (high efficiency line), and the acquisition cost of the first corresponded to 70% the of the second. The power of the electric motor was 100hp. The results showed that the model allowed us to evaluate if a high efficiency motor was economically viable compared to the standard motor in each tariff structure. The high efficiency motor was not viable in the two tariff structures. In the green horo-seasonal tariff, would only be viable if its efficiency was 4.46% higher than the standard motor. In the conventional tariff, it would only be viable if the efficiency overcame 2.71%.
Resumo:
The aim of this study was to evaluate the possible impacts caused in the soil and in the percolate in lysimeters of drainage with application of different rates of swine wastewater (SW) during the cycle of soybean culture and to assess the productivity of it. The experiment was conducted at the Agricultural Engineering Experimental Center of UNIOESTE. The soil was classified as typical Distroferric Red Latosol. There were twenty-four drainage lysimeters in the area in which the soybean was cultivated, cultivar CD 214. Four SW depths (0; 100; 200 and 300 m³ ha-1) were applied to the soil seven days before the sowing in a single application combined with two mineral fertilizations in the sowing (with and without recommended fertilization during sowing), and three repetitions per treatment. It was realized three collections of percolate in each experimental portion, the first was conducted 40 days after sowing (DAS); the second at 72 DAS, and the third at the end of crop cycle (117 DAS). It was evaluated in the percolate the pH, calcium, magnesium, potassium, phosphorus, and total nitrogen. Based on the results, it was possible to observe that the level of K, P and N in the soil increased according tothe increase of SW rates. The levels of K and P in the percolate were higher for higher rates of SW. The productivity was not influenced by the application of SW or by fertilization.
Resumo:
In this study it was evaluated the start-up procedures of anaerobic treatment system with three horizontal anaerobic reactors (R1, R2 and R3), installed in series, with volume of 1.2 L each. R1 had sludge blanket, and R2 and R3 had half supporter of bamboo and coconut fiber, respectively. As an affluent, it was synthesized wastewater from mechanical pulping of the coffee fruit by wet method, with a mean value of total chemical oxygen demand (CODtotal) of 16,003 mg L-1. The hydraulic retention time (HRT) in each reactor was 30 h. The volumetric organic loading (VOL) applied in R1 varied from 8.9 to 25.0 g of CODtotal (L d)-1. The mean removal efficiencies of CODtotal varied from 43 to 97% in the treatment system (R1+R2+R3), stabilizing above 80% after 30 days of operation. The mean content of methane in the biogas were of 70 to 76%, the mean volumetric production was 1.7 L CH4 (L reactor d)-1 in the system, and the higher conversions were around at 0.20 L CH4 (g CODremoved)-1 in R1 and R2. The mean values of pH in the effluents ranged from 6.8 to 8.3 and the mean values of total volatile acids remained below 200 mg L-1 in the effluent of R3. The concentrations of total phenols of the affluent ranged from 45 to 278 mg L-1, and the mean removal efficiency was of 52%. The start-up of the anaerobic treatment system occurred after 30 days of operation as a result of inoculation with anaerobic sludge with active microbiota.