948 resultados para volume change
Resumo:
This study employs stochastic frontier analysis to analyze Malaysian commercial banks during 1996-2002, and particularly focuses on determining the impact of Islamic banking on performance. We derive both net and gross efficiency estimates, thereby demonstrating that differences in operating characteristics explain much of the difference in costs between Malaysian banks. We also decompose productivity change into efficiency, technical, and scale change using a generalised Malmquist productivity index. On average, Malaysian banks experience moderate scale economies and annual productivity change of 2.68 percent, with the latter driven primarily by technical change, which has declined over time. Our gross efficiency estimates suggest that Islamic banking is associated with higher input requirements. However, our productivity estimates indicate that full-fledged Islamic banks have overcome some of these cost disadvantages with rapid technical change, although this is not the case for conventional banks operating Islamic windows. Merged banks are found to have higher input usage and lower productivity change, suggesting that bank mergers have not contributed positively to bank performance. Finally, our results suggest that while the East Asian financial crisis had a short-term cost-reducing effect in 1998, the crisis triggered a more lasting negative impact by increasing the volume of non-performing loans.
Resumo:
This study employs Stochastic Frontier Analysis (SFA) to analyse Malaysian commercial banks during 1996–2002, and particularly focuses on determining the impact of Islamic banking on performance. We derive both net and gross efficiency estimates, thereby demonstrating that differences in operating characteristics explain much of the difference in costs between Malaysian banks. We also decompose productivity change into efficiency, technical, and scale change using a generalized Malmquist productivity index. On average, Malaysian banks experience moderate scale economies and annual productivity change of 2.68%, with the latter driven primarily by Technical Change (TC), which has declined over time. Our gross efficiency estimates suggest that Islamic banking is associated with higher input requirements. However, our productivity estimates indicate that full-fledged Islamic banks have overcome some of these cost disadvantages with rapid TC, although this is not the case for conventional banks operating Islamic windows. Merged banks are found to have higher input usage and lower productivity change, suggesting that bank mergers have not contributed positively to bank performance. Finally, our results suggest that while the East Asian financial crisis had a short-term costreducing effect in 1998, the crisis triggered a long-lasting negative impact by increasing the volume of nonperforming loans.
Resumo:
Respiratory-volume monitoring is an indispensable part of mechanical ventilation. Here we present a new method of the respiratory-volume measurement based on a single fibre-optical long-period sensor of bending and the correlation between torso curvature and lung volume. Unlike the commonly used air-flow based measurement methods the proposed sensor is drift-free and immune to air-leaks. In the paper, we explain the working principle of sensors, a two-step calibration-test measurement procedure and present results that establish a linear correlation between the change in the local thorax curvature and the change of the lung volume. We also discuss the advantages and limitations of these sensors with respect to the current standards. © 2013 IEEE.
Resumo:
An optical in-fiber modal interferometer-based volume strain sensor for earthquake prediction is proposed and experimentally demonstrated. The sensing element is formed by wrapping a multimode-singlemode-multimode fiber structure onto a polyurethane hollow column. Due to the modal interference between the excited guided modes in the fiber, strong interference pattern could be observed in the transmission spectrum. Theoretical analysis verifies that the resonant wavelength shifts as a result of the volume strain variation caused by the column deformation with square root relationship. Sensitivity > 3.93 pm/με within the volume strain ranging from 0 to 1300 με is also experimentally demonstrated. By taking the response of bidirectional change of volume strain and the sluggish character of the employed sensing material into consideration, the sensing system presents good repeatability and stability. © 2001-2012 IEEE.
Resumo:
Global problems, rapid and massive regional changes in the 21st century call for genuine long-term, awareness, planning and well focused actions from both national governments and international organizations. This book wishes to contribute to building an innovative path of strategic views in handling the diverse challenges, and more emphatically, the economic impacts of climate change. Although the contributors of this volume represent several approaches, they all rely on some common grounds such as the costbenefit analysis of mitigation and adaptation, and on the need to present an in-depth theoretical and practical dimension. The research accounted for in this book tried to integrate and confront various types of economics approaches and methods, as well as knowledge from game theory to country surveys, from agricultural adaptation to weather bonds, from green tax to historical experience of human adaptation. The various themes and points of views do deserve the attention of the serious academic reader interested in the economics of climate change. We hope to enhance the spread of good solutions resulting from world wide disputes and tested strategic decisions. WAKE UP! It is not just the polar bears' habitat that is endangered, but the entire human form of life.
Resumo:
Az alábbi írás Kornai János életműsorozata közeljövőben megjelenő harmadik kötetének bevezetője alapján készült. (A sorozat első kötete, A hiány és második kötete, A szocialista rendszer 2012-ben jelent meg.) Ritkán fordul elő, hogy életművét rendszerezve, egy szerző maga veszi tételesen sorra írásait, tárja fel az írások megszületésének körülményeit, és elemzi őket több évtized távlatából. Kornai János életműsorozatának összeállításakor erre a rendkívüli feladatra vállalkozott. A kötetben megjelenő 22 íráshoz fűzött gondolatainak közlésekor mai szemmel veszi górcső alá az egy kivételével a rendszerváltás előtt írt cikkeit, valamint 1956-ban írott első könyvét, A túlzott központosítást. Az írásokat rendszerező bevezető a központosításra és a piaci reformra összpontosítja a figyelmet - e témakörről bebizonyosodott, hogy korai még csupán a közgazdaságtani elmélettörténet fejezeteként számon tartani. A kötetben megjelenő írások egy része közvetlenül kapcsolódik a magyar gazdaság tapasztalataihoz, másik része pedig elméleti jellegű. Ennek megfelelően az itt közölt bevezetés is foglalkozik mind a magyar gazdaságtörténet máig is figyelemre méltó és tanulságos gyakorlati problémáival, mind pedig a szocializmust és a kapitalizmust, a centralizált és decentralizált formákat összehasonlító általános elméletekkel. ______ This piece forms the introduction to the forthcoming third volume of János Kor-nai s life s work series reissued in Hungarian. (The first and second volumes, Economics of Shortage and The Political Economy of the Socialist System, ap-peared in 2012.) It is rare for an author to arrange his own life s work, taking his writings item by item, presenting the circumstances in which they arose, and ana-lysing them decades later. His thoughts on the twenty-two writings in the volume, at the time of republication, involve scrutinizing with present-day eyes articles written, with one exception, before the change of system, along with his first book, Overcentralization, written in 1956. The introduction that systematizes these fo-cuses on centralization and on market reform - events show it is still too soon to see these subjects simply as a chapter in the theoretical history of economics. Some of the articles draw directly on experiences with the Hungarian economy, while others have a theoretical nature. So the introduction also deals both with practical problems of Hungarian economic history that remain notable and instructive, and with comparative general theories of socialism and capitalism and centralized and decentralized forms.
Resumo:
The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. ^ A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re = 90–600 and phase change material particle concentrations of ϵp ≤ 0.25, as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (ϵp = 50%–70%) slurry flow. By using the two newly-defined parameters, named effectiveness factor ϵeff and performance index PI, respectively, it is found that there exists an optimal relation between the channel design parameters L and D, particle volume fraction ϵp, Reynolds number Re, and the wall heat flux qw. The influence of the particle volume fraction ϵp, particle size dp, and the particle viscosity μ p, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. ^ To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed. ^
Resumo:
In this special issue, we report on efforts to reconstruct paleoclimate/paleolimnology of the Florida Everglades, applying a wide range of techniques including sedimentological, micropaleontological and biogeochemical approaches. The papers included here describe results obtained by studies conducted in Everglades National Park and the greater South Florida Everglades by Florida Coastal Everglades Long Term Ecological Research Program (FCE LTER) collaborators. This multi-investigator project contrasts nutrient dynamics in two inland-to-marine transects aligned along separate drainages in southern Florida that differ in their susceptibility to coastal pressures and in volume of freshwater delivery. This effort focuses on the paleoecological aspects of FCE LTER research that address scales of ecosystem transformations driven by climate variability and change and human activities. The central question addressed by this body of work is “How is the shape of the freshwater-to-marine gradient in the Florida coastal Everglades controlled by changes in climate, freshwater inflow (i.e. through human activities), and disturbance (i.e. sea level rise, hurricanes, fire)?”
Resumo:
The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re=600-900 and phase change material particle concentrations ¡Ü0.25 , as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (0.5-0.7) slurry flow. By using the two newly-defined parameters, named effectiveness factor and performance index, respectively, it is found that there exists an optimal relation between the channel design parameters, particle volume fraction, Reynolds number, and the wall heat flux. The influence of the particle volume fraction, particle size, and the particle viscosity, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed.
Resumo:
AIMS: Limited data are available concerning the evolution of the left atrial volume index (LAVI) in pre-heart failure (HF) patients. The aim of this study was to investigate clinical characteristics and serological biomarkers in a cohort with risk factors for HF and evidence of serial atrial dilatation.
METHODS AND RESULTS: This was a prospective substudy within the framework of the STOP-HF cohort (NCT00921960) involving 518 patients with risk factors for HF electively undergoing serial clinical, echocardiographic, and natriuretic peptide assessment. Mean follow-up time between assessments was 15 ± 6 months. 'Progressors' (n = 39) were defined as those with serial LAVI change ≥3.5 mL/m(2) (and baseline LAVI between 20 and 34 mL/m(2)). This cut-off was derived from a calculated reference change value above the biological, analytical, and observer variability of serial LAVI measurement. Multivariate analysis identified significant baseline clinical associates of LAVI progression as increased age, beta-blocker usage, and left ventricular mass index (all P < 0.05). Serological biomarkers were measured in a randomly selected subcohort of 30 'Progressors' matched to 30 'Non-progressors'. For 'Progressors', relative changes in matrix metalloproteinase 9 (MMP9), tissue inhibitor of metalloproteinase 1 (TIMP1), and the TIMP1/MMP9 ratio, markers of interstitial remodelling, tracked with changes in LAVI over time (all P < 0.05).
CONCLUSION: Accelerated LAVI increase was found to occur in up to 14% of all pre-HF patients undergoing serial echocardiograms over a relatively short follow-up period. In a randomly selected subcohort of 'Progressors', changes in LAVI were closely linked with alterations in MMP9, TIMP1, and the ratio of these enzymes, a potential aid in highlighting this at-risk group.
Resumo:
Use of higher proportions of fly ash as a cement replacement in concrete has obvious environmental and performance benefits but high volumes of fly ash are not commonly used due to perceived lower early age strengths. In this investigation, addition of cement kiln dust (CKD) and gypsum to activate the fly ash was studied and the proportions used in the paste mixes were designed to optimize the mixture ingredients to achieve the highest early age compressive strength. Change of mineral phase composition and micro structure of the composites was analyzed. It was found that CKD was much more effective in activating the fly ash than gypsum. Appreciable early age compressive strengths were achieved for fly ash contents up to 60% of the binder and these observations were supported by analysis of the mineral phases.
Resumo:
An electrolytic cell for Aluminium production contains molten metal and molten electrolyte, which are subject to high dc-currents and magnetic fields. Lorentz forces arising from the cross product of current and magnetic field may amplify natural gravity waves at the interface between the two fluids, leading to short circuits in extreme cases. The external magnetic field and current distribution in the production cell is computed through a detailed finite element analysis at Torino Polytechnic. The results are then used to compute the magnetohydrodynamic and thermal effects in the aluminium/electrolyte bath. Each cell has lateral dimensions of 6m x 2m, whilst the bath depth is only 30cm. the electrically resistive electrolyte path, which is critical in the operation of the cell, has layer depth of only a few centimetres below each carbon anode. Because the shallow dimensions of the liquid layer a finite-volume shallow-layer technique has been used at Greenwich to compute the resulting flow-field and interface perturbations. The information obtained from this method, i.e. depth averaged velocities and aluminium/electrolyte interface position is then embedded in the three-dimensional finite volume code PHYSICA and will be used to compute the heat transfer and phase change in the cell.
Resumo:
Phase change problems arise in many practical applications such as air-conditioning and refrigeration, thermal energy storage systems and thermal management of electronic devices. The physical phenomenon in such applications are complex and are often difficult to be studied in detail with the help of only experimental techniques. The efforts to improve computational techniques for analyzing two-phase flow problems with phase change are therefore gaining momentum. The development of numerical methods for multiphase flow has been motivated generally by the need to account more accurately for (a) large topological changes such as phase breakup and merging, (b) sharp representation of the interface and its discontinuous properties and (c) accurate and mass conserving motion of the interface. In addition to these considerations, numerical simulation of multiphase flow with phase change introduces additional challenges related to discontinuities in the velocity and the temperature fields. Moreover, the velocity field is no longer divergence free. For phase change problems, the focus of developmental efforts has thus been on numerically attaining a proper conservation of energy across the interface in addition to the accurate treatment of fluxes of mass and momentum conservation as well as the associated interface advection. Among the initial efforts related to the simulation of bubble growth in film boiling applications the work in \cite{Welch1995} was based on the interface tracking method using a moving unstructured mesh. That study considered moderate interfacial deformations. A similar problem was subsequently studied using moving, boundary fitted grids \cite{Son1997}, again for regimes of relatively small topological changes. A hybrid interface tracking method with a moving interface grid overlapping a static Eulerian grid was developed \cite{Juric1998} for the computation of a range of phase change problems including, three-dimensional film boiling \cite{esmaeeli2004computations}, multimode two-dimensional pool boiling \cite{Esmaeeli2004} and film boiling on horizontal cylinders \cite{Esmaeeli2004a}. The handling of interface merging and pinch off however remains a challenge with methods that explicitly track the interface. As large topological changes are crucial for phase change problems, attention has turned in recent years to front capturing methods utilizing implicit interfaces that are more effective in treating complex interface deformations. The VOF (Volume of Fluid) method was adopted in \cite{Welch2000} to simulate the one-dimensional Stefan problem and the two-dimensional film boiling problem. The approach employed a specific model for mass transfer across the interface involving a mass source term within cells containing the interface. This VOF based approach was further coupled with the level set method in \cite{Son1998}, employing a smeared-out Heaviside function to avoid the numerical instability related to the source term. The coupled level set, volume of fluid method and the diffused interface approach was used for film boiling with water and R134a at the near critical pressure condition \cite{Tomar2005}. The effect of superheat and saturation pressure on the frequency of bubble formation were analyzed with this approach. The work in \cite{Gibou2007} used the ghost fluid and the level set methods for phase change simulations. A similar approach was adopted in \cite{Son2008} to study various boiling problems including three-dimensional film boiling on a horizontal cylinder, nucleate boiling in microcavity \cite{lee2010numerical} and flow boiling in a finned microchannel \cite{lee2012direct}. The work in \cite{tanguy2007level} also used the ghost fluid method and proposed an improved algorithm based on enforcing continuity and divergence-free condition for the extended velocity field. The work in \cite{sato2013sharp} employed a multiphase model based on volume fraction with interface sharpening scheme and derived a phase change model based on local interface area and mass flux. Among the front capturing methods, sharp interface methods have been found to be particularly effective both for implementing sharp jumps and for resolving the interfacial velocity field. However, sharp velocity jumps render the solution susceptible to erroneous oscillations in pressure and also lead to spurious interface velocities. To implement phase change, the work in \cite{Hardt2008} employed point mass source terms derived from a physical basis for the evaporating mass flux. To avoid numerical instability, the authors smeared the mass source by solving a pseudo time-step diffusion equation. This measure however led to mass conservation issues due to non-symmetric integration over the distributed mass source region. The problem of spurious pressure oscillations related to point mass sources was also investigated by \cite{Schlottke2008}. Although their method is based on the VOF, the large pressure peaks associated with sharp mass source was observed to be similar to that for the interface tracking method. Such spurious fluctuation in pressure are essentially undesirable because the effect is globally transmitted in incompressible flow. Hence, the pressure field formation due to phase change need to be implemented with greater accuracy than is reported in current literature. The accuracy of interface advection in the presence of interfacial mass flux (mass flux conservation) has been discussed in \cite{tanguy2007level,tanguy2014benchmarks}. The authors found that the method of extending one phase velocity to entire domain suggested by Nguyen et al. in \cite{nguyen2001boundary} suffers from a lack of mass flux conservation when the density difference is high. To improve the solution, the authors impose a divergence-free condition for the extended velocity field by solving a constant coefficient Poisson equation. The approach has shown good results with enclosed bubble or droplet but is not general for more complex flow and requires additional solution of the linear system of equations. In current thesis, an improved approach that addresses both the numerical oscillation of pressure and the spurious interface velocity field is presented by featuring (i) continuous velocity and density fields within a thin interfacial region and (ii) temporal velocity correction steps to avoid unphysical pressure source term. Also I propose a general (iii) mass flux projection correction for improved mass flux conservation. The pressure and the temperature gradient jump condition are treated sharply. A series of one-dimensional and two-dimensional problems are solved to verify the performance of the new algorithm. Two-dimensional and cylindrical film boiling problems are also demonstrated and show good qualitative agreement with the experimental observations and heat transfer correlations. Finally, a study on Taylor bubble flow with heat transfer and phase change in a small vertical tube in axisymmetric coordinates is carried out using the new multiphase, phase change method.