865 resultados para type 1 diabetes mellitus
Resumo:
OBJECTIVE Little information is available on the early course of hypertension in type 1 diabetes. The aim of our study, therefore, was to document circadian blood pressure profiles in patients with a diabetes duration of up to 20 years and relate daytime and nighttime blood pressure to duration of diabetes, BMI, insulin therapy, and HbA1c. RESEARCH DESIGN AND METHODS Ambulatory profiles of 24-h blood pressure were recorded in 354 pediatric patients with type 1 diabetes (age 14.6 +/- 4.2 years, duration of diabetes 5.6 +/- 5.0 years, follow-up for up to 9 years). A total of 1,011 profiles were available for analysis from patients not receiving antihypertensive medication. RESULTS Although daytime mean systolic pressure was significantly elevated in diabetic subjects (+3.1 mmHg; P < 0.0001), daytime diastolic pressure was not different from from the height- and sex-adjusted normal range (+0.1 mmHg, NS). In contrast, both systolic and diastolic nighttime values were clearly elevated (+7.2 and +4.2 mmHg; P < 0.0001), and nocturnal dipping was reduced (P < 0.0001). Systolic blood pressure was related to overweight in all patients, while diastolic blood pressure was related to metabolic control in young adults. Blood pressure variability was significantly lower in girls compared with boys (P < 0.01). During follow-up, no increase of blood pressure was noted; however, diastolic nocturnal dipping decreased significantly (P < 0.03). Mean daytime blood pressure was significantly related to office blood pressure (r = +0.54 for systolic and r = +0.40 for diastolic pressure); however, hypertension was confirmed by ambulatory blood pressure measurement in only 32% of patients with elevated office blood pressure. CONCLUSIONS During the early course of type 1 diabetes, daytime blood pressure is higher compared with that of healthy control subjects. The elevation of nocturnal values is even more pronounced and nocturnal dipping is reduced. The frequency of white-coat hypertension is high among adolescents with diabetes, and ambulatory blood pressure monitoring avoids unnecessary antihypertensive treatment.
Resumo:
Type 1 diabetes is caused by autoimmune-mediated β cell destruction leading to insulin deficiency. The histone deacetylase SIRT1 plays an essential role in modulating several age-related diseases. Here we describe a family carrying a mutation in the SIRT1 gene, in which all five affected members developed an autoimmune disorder: four developed type 1 diabetes, and one developed ulcerative colitis. Initially, a 26-year-old man was diagnosed with the typical features of type 1 diabetes, including lean body mass, autoantibodies, T cell reactivity to β cell antigens, and a rapid dependence on insulin. Direct and exome sequencing identified the presence of a T-to-C exchange in exon 1 of SIRT1, corresponding to a leucine-to-proline mutation at residue 107. Expression of SIRT1-L107P in insulin-producing cells resulted in overproduction of nitric oxide, cytokines, and chemokines. These observations identify a role for SIRT1 in human autoimmunity and unveil a monogenic form of type 1 diabetes.
Resumo:
Glycogen levels in liver and skeletal muscle assessed non-invasively using magnetic resonance spectroscopy after a 48-h pre-study period including a standardized diet and withdrawal from exercise did not differ between individuals with well-controlled Type 1 DM and matched healthy controls.
Resumo:
BACKGROUND: Investigating individual, as opposed to predetermined, quality of life domains may yield important information about quality of life. This study investigated the individual quality of life domains nominated by youth with type 1 diabetes. METHODS: Eighty young people attending a diabetes summer camp completed the Schedule for the Evaluation of Individual Quality of Life-Direct Weighting interview, which allows respondents to nominate and evaluate their own quality of life domains. RESULTS: The most frequently nominated life domains were 'family', 'friends', 'diabetes', 'school', and 'health' respectively; ranked in terms of importance, domains were 'religion', 'family', 'diabetes', 'health', and 'the golden rule'; ranked in order of satisfaction, domains were 'camp', 'religion', 'pets', and 'family' and 'a special person' were tied for fifth. Respondent age was significantly positively associated with the importance of 'friends', and a significantly negatively associated with the importance of 'family'. Nearly all respondents nominated a quality of life domain relating to physical status, however, the specific physical status domain and the rationale for its nomination varied. Some respondents nominated 'diabetes' as a domain and emphasized diabetes 'self-care behaviors' in order to avoid negative health consequences such as hospitalization. Other respondents nominated 'health' and focused more generally on 'living well with diabetes'. In an ANOVA with physical status domain as the independent variable and age as the dependent variable, participants who nominated 'diabetes' were younger (M = 12.9 years) than those who nominated 'health' (M = 15.9 years). In a second ANOVA, with rationale for nomination the physical status domain as the independent variable, and age as the dependent variable, those who emphasized 'self care behaviors' were younger (M = 11.8 years) than those who emphasized 'living well with diabetes' (M = 14.6 years). These differences are discussed in terms of cognitive development and in relation to the decline in self-care and glycemic control often observed during adolescence. CONCLUSIONS: Respondents nominated many non-diabetes life domains, underscoring that QOL is multidimensional. Subtle changes in conceptualization of diabetes and health with increasing age may reflect cognitive development or disease adjustment, and speak to the need for special attention to adolescents. Understanding individual quality of life domains can help clinicians motivate their young patients with diabetes for self-care. Future research should employ a larger, more diverse sample, and use longitudinal designs.
Resumo:
Diabetic nephropathy is the most common cause of end-stage renal disease (ESRD) in the United States. African-Americans and patients with type 1 diabetes (T1D) are at increased risk. We studied the rate and factors that influenced progression of glomerular filtration rate (GFR) in 401 African-American T1D patients who were followed for 6 years through the observational cohort New Jersey 725 study. Patients with ESRD and/or GFR<20 ml/min were excluded. The mean (SD) baseline GFR was 106.8 (27.04) ml/min and it decreased by 13.8 (mean, SD 32.2) ml/min during the 6-year period (2.3 ml/min/year). In patients with baseline macroproteinuria, GFR decreased by 31.8 (39.0) ml/min (5.3 ml/min/year) compared to 8.2 (mean, SD 27.6) ml/min (1.3 ml/min/year) in patients without it (p<0.00001). Six-year GFR fell to <20 ml/min in 5.25% of all patients, but in 16.8% of macroproteinuric patients.^ A model including baseline GFR, proteinuria category and hypertension category, explained 35% of the 6-year GFR variability (p<0.0001). After adjustment for other variables in the model, 6-year GFR was 24.9 ml/min lower in macroproteinuric patients than in those without proteinuria (p=0.0001), and 12.6 ml/min lower in patients with treated but uncontrolled hypertension compared to normotensive patients (p=0.003). In this sample of patients, with an elevated mean glycosylated hemoglobin of 12.4%, glycemic control did not independently influence GFR deterioration, nor did BMI, cholesterol, gender, age at diabetes onset or socioeconomic level.^ Taken together, our findings suggest that proteinuria and hypertension are the most important factors associated with GFR deterioration in African-American T1D patients.^
Resumo:
La diabetes comprende un conjunto de enfermedades metabólicas que se caracterizan por concentraciones de glucosa en sangre anormalmente altas. En el caso de la diabetes tipo 1 (T1D, por sus siglas en inglés), esta situación es debida a una ausencia total de secreción endógena de insulina, lo que impide a la mayoría de tejidos usar la glucosa. En tales circunstancias, se hace necesario el suministro exógeno de insulina para preservar la vida del paciente; no obstante, siempre con la precaución de evitar caídas agudas de la glucemia por debajo de los niveles recomendados de seguridad. Además de la administración de insulina, las ingestas y la actividad física son factores fundamentales que influyen en la homeostasis de la glucosa. En consecuencia, una gestión apropiada de la T1D debería incorporar estos dos fenómenos fisiológicos, en base a una identificación y un modelado apropiado de los mismos y de sus sorrespondientes efectos en el balance glucosa-insulina. En particular, los sistemas de páncreas artificial –ideados para llevar a cabo un control automático de los niveles de glucemia del paciente– podrían beneficiarse de la integración de esta clase de información. La primera parte de esta tesis doctoral cubre la caracterización del efecto agudo de la actividad física en los perfiles de glucosa. Con este objetivo se ha llevado a cabo una revisión sistemática de la literatura y meta-análisis que determinen las respuestas ante varias modalidades de ejercicio para pacientes con T1D, abordando esta caracterización mediante unas magnitudes que cuantifican las tasas de cambio en la glucemia a lo largo del tiempo. Por otro lado, una identificación fiable de los periodos con actividad física es un requisito imprescindible para poder proveer de esa información a los sistemas de páncreas artificial en condiciones libres y ambulatorias. Por esta razón, la segunda parte de esta tesis está enfocada a la propuesta y evaluación de un sistema automático diseñado para reconocer periodos de actividad física, clasificando su nivel de intensidad (ligera, moderada o vigorosa); así como, en el caso de periodos vigorosos, identificando también la modalidad de ejercicio (aeróbica, mixta o de fuerza). En este sentido, ambos aspectos tienen una influencia específica en el mecanismo metabólico que suministra la energía para llevar a cabo el ejercicio y, por tanto, en las respuestas glucémicas en T1D. En este trabajo se aplican varias combinaciones de técnicas de aprendizaje máquina y reconocimiento de patrones sobre la fusión multimodal de señales de acelerometría y ritmo cardíaco, las cuales describen tanto aspectos mecánicos del movimiento como la respuesta fisiológica del sistema cardiovascular ante el ejercicio. Después del reconocimiento de patrones se incorpora también un módulo de filtrado temporal para sacar partido a la considerable coherencia temporal presente en los datos, una redundancia que se origina en el hecho de que en la práctica, las tendencias en cuanto a actividad física suelen mantenerse estables a lo largo de cierto tiempo, sin fluctuaciones rápidas y repetitivas. El tercer bloque de esta tesis doctoral aborda el tema de las ingestas en el ámbito de la T1D. En concreto, se propone una serie de modelos compartimentales y se evalúan éstos en función de su capacidad para describir matemáticamente el efecto remoto de las concetraciones plasmáticas de insulina exógena sobre las tasas de eleiminación de la glucosa atribuible a la ingesta; un aspecto hasta ahora no incorporado en los principales modelos de paciente para T1D existentes en la literatura. Los datos aquí utilizados se obtuvieron gracias a un experimento realizado por el Institute of Metabolic Science (Universidad de Cambridge, Reino Unido) con 16 pacientes jóvenes. En el experimento, de tipo ‘clamp’ con objetivo variable, se replicaron los perfiles individuales de glucosa, según lo observado durante una visita preliminar tras la ingesta de una cena con o bien alta carga glucémica, o bien baja. Los seis modelos mecanísticos evaluados constaban de: a) submodelos de doble compartimento para las masas de trazadores de glucosa, b) un submodelo de único compartimento para reflejar el efecto remoto de la insulina, c) dos tipos de activación de este mismo efecto remoto (bien lineal, bien con un punto de corte), y d) diversas condiciones iniciales. ABSTRACT Diabetes encompasses a series of metabolic diseases characterized by abnormally high blood glucose concentrations. In the case of type 1 diabetes (T1D), this situation is caused by a total absence of endogenous insulin secretion, which impedes the use of glucose by most tissues. In these circumstances, exogenous insulin supplies are necessary to maintain patient’s life; although caution is always needed to avoid acute decays in glycaemia below safe levels. In addition to insulin administrations, meal intakes and physical activity are fundamental factors influencing glucose homoeostasis. Consequently, a successful management of T1D should incorporate these two physiological phenomena, based on an appropriate identification and modelling of these events and their corresponding effect on the glucose-insulin balance. In particular, artificial pancreas systems –designed to perform an automated control of patient’s glycaemia levels– may benefit from the integration of this type of information. The first part of this PhD thesis covers the characterization of the acute effect of physical activity on glucose profiles. With this aim, a systematic review of literature and metaanalyses are conduced to determine responses to various exercise modalities in patients with T1D, assessed via rates-of-change magnitudes to quantify temporal variations in glycaemia. On the other hand, a reliable identification of physical activity periods is an essential prerequisite to feed artificial pancreas systems with information concerning exercise in ambulatory, free-living conditions. For this reason, the second part of this thesis focuses on the proposal and evaluation of an automatic system devised to recognize physical activity, classifying its intensity level (light, moderate or vigorous) and for vigorous periods, identifying also its exercise modality (aerobic, mixed or resistance); since both aspects have a distinctive influence on the predominant metabolic pathway involved in fuelling exercise, and therefore, in the glycaemic responses in T1D. Various combinations of machine learning and pattern recognition techniques are applied on the fusion of multi-modal signal sources, namely: accelerometry and heart rate measurements, which describe both mechanical aspects of movement and the physiological response of the cardiovascular system to exercise. An additional temporal filtering module is incorporated after recognition in order to exploit the considerable temporal coherence (i.e. redundancy) present in data, which stems from the fact that in practice, physical activity trends are often maintained stable along time, instead of fluctuating rapid and repeatedly. The third block of this PhD thesis addresses meal intakes in the context of T1D. In particular, a number of compartmental models are proposed and compared in terms of their ability to describe mathematically the remote effect of exogenous plasma insulin concentrations on the disposal rates of meal-attributable glucose, an aspect which had not yet been incorporated to the prevailing T1D patient models in literature. Data were acquired in an experiment conduced at the Institute of Metabolic Science (University of Cambridge, UK) on 16 young patients. A variable-target glucose clamp replicated their individual glucose profiles, observed during a preliminary visit after ingesting either a high glycaemic-load or a low glycaemic-load evening meal. The six mechanistic models under evaluation here comprised: a) two-compartmental submodels for glucose tracer masses, b) a single-compartmental submodel for insulin’s remote effect, c) two types of activations for this remote effect (either linear or with a ‘cut-off’ point), and d) diverse forms of initial conditions.
Resumo:
Whole genome linkage analysis of type 1 diabetes using affected sib pair families and semi-automated genotyping and data capture procedures has shown how type 1 diabetes is inherited. A major proportion of clustering of the disease in families can be accounted for by sharing of alleles at susceptibility loci in the major histocompatibility complex on chromosome 6 (IDDM1) and at a minimum of 11 other loci on nine chromosomes. Primary etiological components of IDDM1, the HLA-DQB1 and -DRB1 class II immune response genes, and of IDDM2, the minisatellite repeat sequence in the 5' regulatory region of the insulin gene on chromosome 11p15, have been identified. Identification of the other loci will involve linkage disequilibrium mapping and sequencing of candidate genes in regions of linkage.
Resumo:
Type 1 diabetes mellitus is caused by severe insulin deficiency secondary to the autoimmune destruction of pancreatic beta cells. Patients need to be controlled by periodic insulin injections to prevent the development of ketoacidosis, which can be fatal. Sustained, low-level expression of the rat insulin 1 gene from the liver of severely diabetic rats was achieved by in vivo administration of a recombinant retroviral vector. Ketoacidosis was prevented and the treated animals exhibited normoglycemia during a 24-hr fast, with no evidence of hypoglycemia. Histopathological examination of the liver in the treated animals showed no apparent abnormalities. Thus, the liver is an excellent target organ for ectopic expression of the insulin gene as a potential treatment modality for type 1 diabetes mellitus by gene therapy.
Resumo:
Objectives: To evaluate the use of small doses of glucagon using an insulin syringe in mild or impending hypoglycaemia in children with type 1 diabetes. Methods: Data were collected from patients attending the Paediatric Diabetes Clinic at the Queensland Diabetes Centre at the Mater Hospital, Brisbane in 2002-2004 following the institution of a new protocol for home management of mild or impending hypoglycaemia associated with inability or refusal to take oral carbohydrate. The protocol recommended the use of subcutaneous injections of glucagon using insulin syringes at a dose of two ' units ' (20 mu g) in children 2 years of age or younger, and for older children one unit per year of age up to a maximum of 15 units (150 mu g), with an additional doubled dose given if the blood glucose had not increased in 20 min. Results: Over a 2-year period, 25 children were treated with mini-dose glucagon on a total of 38 occasions. Additional doses were required for recurring hypoglycaemia on 20 (53%) occasions. The child could be managed at home on 32 (84%) of these 38 occasions, with only 6 (16%) children needing hospital treatment. Conclusions: Our study confirmed that small doses of glucagon given subcutaneously with an insulin syringe is a simple, practical and effective home treatment of mild or impending hypoglycaemia due to gastroenteritis or food refusal in children with type 1 diabetes.