947 resultados para tungsten carbide
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.
Resumo:
Purpose: To investigate the effects of intrapulpal temperature changes induced by a quartz tungsten halogen (QTH) and a light emitting diode (LED) curing units on the metabolism of odontoblast-like cells. Methods: Thirty-six 0.5 mm-thick dentin discs obtained from sound human teeth were randomly assigned into three groups: QTH, LED and no light (control). After placement of the dentin discs in pulp chamber devices, a thermistor was attached to the pulpal surface of each disc and the light sources were applied on the occlusal surface. After registering the temperature change, odontoblast-like cells MDPC-23 were seeded on the pulpal side of the discs and the curing lights were again applied. Cell metabolism was evaluated by the MTT assay and cell morphology was assessed by SEM. Results: In groups QTH and LED the intrapulpal temperature increased by 6.4 degrees C and 3.4 degrees C, respectively. The difference between both groups was statistically significant (Mann-Whitney; P< 0.05). QTH and LED reduced the cell metabolism by 36.4% and 33.4%, respectively. Regarding the cell metabolism, no statistically significant difference was observed between both groups (Mann-Whitney; P> 0.05). However, when compared to the control, only QTH significantly reduced the cell metabolism (Mann-Whitney; P< 0.05). It was concluded that the irradiance of 0.5 mm-thick human dentin discs with a QTH in comparison to a LED curing unit promoted a higher temperature rise, which propagates through the dentin negatively affecting the metabolism of the underlying cultured pulp cells. (Am J Dent 2009;22:151-156).
Resumo:
Objective: The aim of the present study was to evaluate the effect of CO(2) laser irradiation (10.6 mu m) at 0.3 J/cm(2) (0.5 mu s; 226 Hz) on the resistance of softened enamel to toothbrushing abrasion, in vitro. Methods: Sixty human enamel samples were obtained, polished with silicon carbide papers and randomly divided into five groups (n = 12), receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C). After surface treatment they were submitted to a 25-day erosive-abrasive cycle in 100 ml sprite light (90 s) and brushed twice daily with an electric toothbrush. Between the demineralization periods samples were immersed in supersaturated mineral solution. At the end of the experiments enamel surface loss was determined using a contact profilometer and morphological analysis was performed using scanning electron microscopy (SEM). For SEM analysis of demineralization pattern, cross-sectional cuts of cycled samples were prepared. The data were statistically analysed by one-way ANOVA model with subsequent pairwise comparison of treatments. Results: Abrasive surface loss was significantly lower in all laser groups compared to both control and fluoride groups (p < 0.0001 in all cases). Amongst the laser groups no significant difference was observed. Softened enamel layer underneath lesions was less pronounced in laser-irradiated samples. Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3 J/cm(2) (5 mu s, 226 Hz) either alone or in combination with amine fluoride gel significantly decreases toothbrushing abrasion of softened-enamel, in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The aims of the present study were to investigate whether irradiation with a CO(2) laser could prevent surface softening (i) in sound and (ii) in already softened enamel in vitro. Methods: 130 human enamel samples were obtained and polished with silicon carbide papers. They were divided into 10 groups (n = 13) receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C); and submitted to 2 different procedures: half of the groups was acid-softened before surface treatment and the other half after. Immersion in 1% citric acid was the acid challenge. Surface microhardness (SMH) was measured at baseline, after softening and after treatment. Additionally, fluoride uptake in the enamel was quantified. The data were statistically analysed by two-way repeated measurements ANOVA and post hoc comparisons at 5% significance level. Results: When softening was performed either before or after laser treatment, the L group presented at the end of the experiments SMH means that were not significantly different from baseline (p = 0.8432, p = 0.4620). Treatment after softening resulted for all laser groups in statistically significant increase in SMH means as compared to values after softening (p < 0.0001). Enamel fluoride uptake was significantly higher for combined laser-fluoride treatment than in control (p < 0.0001). Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3J/cm(2) (5 mu s, 226 Hz) not only significantly decreased erosive mineral loss (97%) but also rehardened previously softened enamel in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of the C-factor and dentin preparation method (DPM) in the bond strength (BS) of a mild self-etch adhesive; the study also observed the SEM superficial aspects of the corresponding smear layer. For purposes of this study, 25 molars (n=5) were used in a bond strength test. The molars were divided into two parts (buccal and lingual): one part received a Class V cavity (C-factor=3) and the other received a flat surface (C-factor=0) with the same bur type (coarse diamond or carbide bur and fine diamond or carbide bur), both within the same dentin depth. Five teeth were prepared with wet 60-grit and 600-grit SiC papers. After restoration with Clearfil SE Bond, microtensile beans (0.8 mm(2)) were prepared and tested after 24 hours in a universal testing machine (0.5 mm/minute). An additional two teeth for each DPM were prepared for SEM evaluation of the smear layer superficial aspects. The BS values were submitted to one-way ANOVA, considering only the DPM (flat surfaces) and two-way ANOVA (C-Factor x DPM, considering only burs) with p=0.05. Although the DPM in the flat surfaces was not significant, the standard deviations of carbide bur-prepared specimens were markedly lower. The BS was significantly lower in cavities. The fine carbide bur presented the most favorable smear layer aspect. It was concluded that different dentin preparation methods could not prevent the adverse effect in bond strength of a high C-factor. A coarse cut carbide bur should be avoided prior to a mild self-etch adhesive, because it adversely affected bond strength. In contrast, a fine cut carbide bur provided the best combination: high bond strength with low variability, which suggests a more reliable bond strength performance.
Resumo:
The Epiphany (TM) Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a `monoblock` effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany (TM) Sealer, the Epiphany (TM) Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm(2), respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey`s post-hoc tests showed significant statistical differences (P < 0.05) to Epiphany (TM) Sealer/Epiphany (TM) Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.
Resumo:
A series of metal-matrix composites were formed by extrusion freeform, fabrication of a sinterable aluminum alloy in combination with silicon carbide particles and whiskers, carbon fibers, alumina particles, and hollow flyash cenospheres. Silicon carbide particles were most successful in that the composites retained high density with up to 20 vol% of reinforcement and the strength approximately doubles over the strength of the metal matrix alone. Comparison with simple models suggests that this unexpectedly high degree of reinforcement can be attributed to the concentration of small silicon carbide particles around the larger metal powder. This fabrication method also allows composites to be formed with hollow spheres that cannot be formed by other powder or melt methods.
Resumo:
The orientation relationships between hexagonal Mo2C precipitates (H) in ferrite (B) have been determined by electron diffraction to an accuracy of +/-2degrees. With one exception, the 19 results are consistent with the previously reported Pitsch and Schrader (P/S) orientation relationship. However, these more accurate determinations show clearly that there is a systematic deviation of up to 5.5degrees from the exact P/S relationship and that this deviation consists of a small rotation about the parallel close packed directions-[100](B)//[2 (1) over bar(1) over bar0](H). The long direction of the Mo2C needles has been determined unequivocally in terms of the orientation relationship to be [100](B)//[2 (1) over bar(1) over bar0](H). Moire fringes between precipitate and matrix have been used to improve the accuracy of the orientation relationship results and to determine the lattice parameters of the carbide precipitates investigated. The Moire fringe analysis has shown small systematic departures from the exact parallelism between [100](B) and [2 (1) over bar(1) over bar0](H) along the length of Mo2C needles and a lowering of the carbide lattice parameter that is consistent with the replacement of Mo by Fe in the carbide. The orientation relationship results, including the observed systematic deviation from the exact P/S relationship, are shown to be consistent with the edge-to-edge model. (C) 2002 Kluwer Academic Publishers.
Resumo:
The short-lived Hf-182-W-182-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic Hf-182-W-182-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 epsilon(182W) units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while Hf-182 was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value. Copyright (C) 2002 Elsevier Science Ltd.
Resumo:
Neste trabalho, as distribuições de tamanhos das partículas de dois pós de Carboneto de Silício foram previamente avaliadas e os resultados indicaram uma distribuição Gaussiana para ambos, com tamanhos médios na ordem de 2 μm para o primeiro e 6 μm para o segundo. Posteriormente foram misturados os dois pós originais com diferentes frações mássicas, proporcionando uma nova série de pós de Carboneto de Silício (SiC), que seriam usados nos ensaios de microabrasão com configuração de esfera fixa. A caracterização desta nova série de pós mostrou larguras maiores para aqueles com alto porcentagem do abrasivo pequeno (2,11 μm), conservando a aparência Gaussiana dos originais. Por outro lado para os pós com uma quantidade maior do abrasivo grande (6,57 μm), foram obtidas curvas com uma leve tendência bimodal, mas também apresentaram maiores larguras. As provas foram conduzidas sobre aço carbono AISI 1020, para duas condições diferentes de carga normal e os resultados foram analisados em termos da taxa de desgaste, bem como dos micromecanismos de desgaste (abrasão por rolamento ou abrasão por riscamento). Os resultados indicaram que a fração mássica dos pós originais tem um efeito significante sobre os micromecanismos de desgaste observados e que as taxas de desgaste não segue uma relação linear com a fração mássica do pó com maior tamanho da partícula abrasiva. Além disso, a análise da severidade de contato determinou que esta diminui durante os ensaios conduzidos com carga constante. Este fenômeno está associado ao aumento da área da cratera de desgaste que produz uma diminuição da pressão de contato. Assim, um incremento para o número de eventos associado ao rolamento de partículas seria esperado, favorecendo a observação de múltiplas indentações ao longo dos sulcos formados previamente. Isto foi confirmado por meio de micrografias eletrônicas de varredura das amostras após ensaios de microabrasão.
Resumo:
Laser-assisted chemical vapour deposition (LCVD) has been extensively studied in the last two decades. A vast range of applications encompass various areas such as microelectronics, micromechanics, microelectromechanics and integrated optics, and a variety of metals, semiconductors and insulators have been grown by LCVD. In this article, we review briefly the LCVD process and present two case studies of thin film deposition related to laser thermal excitation (e.g., boron carbide) and non-thermal excitation (e.g., CrO(2)) of the gas phase.
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.
Resumo:
Ao longo deste trabalho é apresentada a caracterização optoelectrónica de uma estrutura semicondutora empilhada de fotodíodos PIN (Positive-Intrinsic-Negative), baseados em silício amorfo hidrogenado (a-Si:H - Hydrogenated Amorphous Silicon) e siliceto de carbono amorfo hi-drogenado (a-SiC:H - Hydrogenated Amorphous Silicon Carbide), em que ambos funcionam como filtros ópticos na zona visível do espectro electromagnético e cuja sensibilidade espectral na região do visível é modulada pelo sinal de tensão eléctrico aplicado e pela presença de polarização óptica adicional (radiação de fundo). Pretende-se utilizar a característica de sensor de cor destes dispositivos semicondutores para realizar a demultiplexagem de sinais ópticos e desenvolver um algoritmo que permita fazer o reco-nhecimento autónomo do sinal transmitido em cada canal, tendo em vista a utilização de vários ca-nais para a transmissão de sinais a curta distância. A transmissão destes sinais deverá ser suportada no meio de transmissão fibra óptica, que constituirá uma importante mais-valia na optimização do sistema WDM (Wavelength Division Mul-tiplexing), permitindo optimizar a transmissão de sinais. Pelas suas capacidades intrínsecas, as fi-bras ópticas de plástico (POF - Plastic Optical Fibers) são uma solução adequada para a transmis-são de sinais no domínio visível do espectro electromagnético a curtas distâncias. Foi realizada uma sucinta caracterização optoelectrónica da estrutura semicondutora sob diferentes condições de iluminação, variando o comprimento de onda e a iluminação de fundo que influencia a resposta espectral do dispositivo semicondutor, variando as cores dos fundos inciden-tes, variando o lado incidente do fundo sobre a estrutura semicondutora, variando a intensidade des-ses mesmos fundos incidentes e também variando a frequência do sinal de dados. Para a transmissão dos sinais de dados foram utilizados três dispositivos LED (Light-Emitting Diode) com as cores vermelho (626nm), verde (525nm) e azul (470nm) a emitir os respec-tivos sinais de dados sobre a estrutura semicondutora e onde foram aplicadas diversas configurações de radiação de fundo incidente, variando as cores dos fundos incidentes, variando o lado incidente do fundo sobre a estrutura semicondutora e variando também a intensidade desses mesmos fundos incidentes. Com base nos resultados obtidos ao longo deste trabalho, foi possível aferir sobre a influên-cia da presença da radiação de fundo aplicada ao dispositivo, usando diferentes sequências de dados transmitidos nos vários canais. Sob polarização inversa, e com a aplicação de um fundo incidente no lado frontal da estrutura semicondutora os valores de fotocorrente gerada são amplificados face aos valores no escuro, sendo que os valores mais altos foram encontrados com a aplicação do fundo de cor violeta, contribuindo para tal, o facto do sinal do canal vermelho e canal verde serem bastan-te amplificados com a aplicação deste fundo. Por outro lado, com a aplicação dos fundos incidentes no lado posterior da estrutura semi-condutora, o sinal gerado não é amplificado com nenhuma cor, no entanto, a aplicação do fundo de cor azul proporciona a distinção do sinal proveniente do canal azul e do canal vermelho, sendo que quando está presente um sinal do canal vermelho, o sinal é fortemente atenuado e com a presença do sinal do canal azul o sinal gerado aproxima-se mais do valor de fotocorrente gerada com a estru-tura no escuro. O algoritmo implementado ao longo deste trabalho, permite efectuar o reconhecimento au-tónomo da informação transmitida por cada canal através da leitura do sinal da fotocorrente forne-cida pelo dispositivo quando sujeito a uma radiação de fundo incidente violeta no lado frontal e uma radiação de fundo incidente azul no lado posterior. Este algoritmo para a descodificação dos sinais WDM utiliza uma aplicação gráfica desenvolvida em Matlab que com base em cálculos e compara-ções de sinal permite determinar a sequência de sinal dos três canais ópticos incidentes. O trabalho proposto nesta tese é um módulo que se enquadra no desenvolvimento de um sistema integrado de comunicação óptica a curta distância, que tem sido alvo de estudo e que resulta das conclusões de trabalhos anteriores, em que este dispositivo e outros de configuração idêntica foram analisados, de forma a explorar a sua utilização na implementação da tecnologia WDM den-tro do domínio do espectro visível e utilizando as POF como meio de transmissão.
Resumo:
This work reports on the optoelectronic properties and device application of hydrogenated amorphous silicon carbide (a-Si(1-x)C(x):H) films grown by plasma-enhanced chemical vapour deposition (PECVD). The films with an optical bandgap ranging from about 1.8 to 2.0 eV were deposited in hydrogen diluted silane-methane plasma by varying the radio frequency power. Several n-i-p structures with an intrinsic a-Si(1-x)C(x):H layer of different optical gaps were also fabricated. The optimized devices exhibited a diode ideality factor of 1.4-1.8, and a leakage current of 190-470 pA/cm(2) at -5 V. The density of deep defect states in a-Si(1-x)C(x):H was estimated from the transient dark current measurements and correlated with the optical bandgap and carbon content. Urbach energies for the valence band tail were also determined by analyzing the spectral response within sub-bandgap energy range. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Trabalho de Projeto Apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Tradução e Interpretação Especializadas, sob orientação da Mestre Graça Chorão e coorientação da Mestre Paula Almeida