984 resultados para traveling-wave amplifier
Resumo:
The linear spin-1/2 Heisenberg antiferromagnet with exchanges J(1) and J(2) between first and second neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at J(2)/J(1)=0.2411 and is particularly simple at J(2)/J(1)=1/2. The BOW phase has a doubly degenerate singlet ground state, broken inversion symmetry, and a finite-energy gap E-m to the lowest-triplet state. The interval 0.4 < J(2)/J(1) < 1.0 has large E-m and small finite-size corrections. Exact solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for thermodynamics up to N = 18. The elementary excitations of the BOW phase with large E-m are topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins. The molar spin susceptibility chi(M)(T) is exponentially small for T << E-m and increases nearly linearly with T to a broad maximum. J(1) and J(2) spin chains approximate the magnetic properties of the BOW phase of Hubbard-type models and provide a starting point for modeling alkali-tetracyanoquinodimethane salts.
Resumo:
Mapping the shear wave velocity profile is an important part in seismic hazard and microzonation studies. The shear wave velocity of soil in the city of Bangalore was mapped using the Multichannel Analysis of Surface Wave (MASW) technique. An empirical relationship was found between the Standard Penetration Test (SPT) corrected N value ((N1)60cs) and measured shear wave velocity (Vs). The survey points were selected in such a way that the results represent the entire Bangalore region, covering an area of 220 km2. Fifty-eight 1-D and 20 2-D MASW surveys were performed and their velocity profiles determined. The average shear wave velocity of Bangalore soils was evaluated for depths of 5 m, 10 m, 15 m, 20 m, 25 m and 30 m. The sub-soil classification was made for seismic local site effect evaluation based on average shear wave velocity of 30-m depth (Vs30) of sites using the National Earthquake Hazards Reduction Program (NEHRP) and International Building Code (IBC) classification. Mapping clearly indicates that the depth of soil obtained from MASW closely matches with the soil layers identified in SPT bore holes. Estimation of local site effects for an earthquake requires knowledge of the dynamic properties of soil, which is usually expressed in terms of shear wave velocity. Hence, to make use of abundant SPT data available on many geotechnical projects in Bangalore, an attempt was made to develop a relationship between Vs (m/s) and (N1)60cs. The measured shear wave velocity at 38 locations close to SPT boreholes was used to generate the correlation between the corrected N values and shear wave velocity. A power fit model correlation was developed with a regression coefficient (R2) of 0.84. This relationship between shear wave velocity and corrected SPT N values correlates well with the Japan Road Association equations.
Resumo:
An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.
Resumo:
The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes.
The partition of unity finite element method for elastic wave propagation in Reissner-Mindlin plates
Resumo:
This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.
Resumo:
We present a case study of formal verification of full-wave rectifier for analog and mixed signal designs. We have used the Checkmate tool from CMU [1], which is a public domain formal verification tool for hybrid systems. Due to the restriction imposed by Checkmate it necessitates to make the changes in the Checkmate implementation to implement the complex and non-linear system. Full-wave rectifier has been implemented by using the Checkmate custom blocks and the Simulink blocks from MATLAB from Math works. After establishing the required changes in the Checkmate implementation we are able to efficiently verify, the safety properties of the full-wave rectifier.
Resumo:
In this paper, the nonlocal elasticity theory has been incorporated into classical Euler-Bernoulli rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behaviors of nanorods from those of macroscopic rods. Nonlocal Euler-Bernoulli bar model is developed for nanorods. Explicit expressions are derived for wavenumbers and wave speeds of nanorods. The analysis shows that the wave characteristics are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial wave mode where no wave propagation occurs. This is manifested in the spectrum cures as the region where the wavenumber tends to infinite (or wave speed tends to zero). The results can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the terahertz wave propagation in fluid filled single walled carbon nanotubes (SWCNTs). The SWCNT is modeled as a Timoshenko beam,including rotary inertia and transverse shear deformation by considering the nonlocal scale effects. A uniform fluid velocity of 1000 m/s is assumed. The analysis shows that, for a fluid filled SWCNT, the wavenumbers of flexural and shear waves will increase and the corresponding wave speeds will decrease as compared to an empty SWCNT. The nonlocal scale parameter introduces certain band gap region in both flexural and shear wave mode where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite (or wave speed tends to zero). The frequency at which this phenomenon occurs is called the ``escape frequency''. The effect of fluid density on the terahertz wave propagation in SWCNT is also studied and the analysis shows that as the fluid becomes denser, the wave speeds will decrease. The escape frequency decreases with increase in nonlocal scaling parameter, for both wave modes. We also show that the effect of fluid density and velocity are negligible on the escape frequencies of flexural and shear wave modes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The electron temperature structure in a weakly ionized plasma is studied allowing the degree of ionization to vary across the shock wave. The values of the electron temperature and the downstream equilibrium temperature obtained with variable ionization are less than those for frozen ionization. The electron temperature rises sharply behind the shock for variable ionization while a gradual increase is predicted by frozen ionization.
Resumo:
The instability of coupled longitudinal and transverse electromagnetic modes associated with long wavelengths is studied in bounded streaming plasmas. The main conclusions are as follows: (i) For long waves for which O (k 2)=0, in the absence of relative streaming motion of electrons and ions and aωp/c<0.66, the whole spectrum of harmonic waves is excited due to finite temperature and boundary effects consisting of two subseries. One of these subseries can be identified with Tonks-Dattner resonance oscillations for the electrons, and arises primarily due to the electrons with frequencies greater than the electrostatic plasma frequency corresponding to the electron density in the midplane in the undisturbed state. The other series arises primarily due to ion motion. When aωp/c>0.66, in addition to the above spectrum of harmonic waves, the system admits an infinite number of growing and decaying waves. The instability associated with these modes is found to arise due to the interaction of the waves inside the plasma with the external electromagnetic field. (ii) For modes with comparatively shorter wavelengths for which O (k3)=0, the coupling due to finite temperature sets in, and it is found that the two series of harmonic waves obtained in (i) deriving energy from the transverse modes also become unstable. Thus, for these wavelengths the system admits three sets of growing and decaying modes, first two for all values of aωp/c and the third for (aωp/c) > 0.66. (iii) The presence of streaming velocities introduces various other coupling mechanisms, and we find that even for the wavelengths for which O (k2)=0, we get three sets of growing and decaying waves. The numerical values for the growth rates show that the streaming velocities enhance the growth rates of instability significantly.
Resumo:
This paper studies an ultrasonic wave dispersion characteristics of a nanorod. Nonlocal strain gradient models (both second and fourth order) are introduced to analyze the ultrasonic wave behavior in nanorod. Explicit expressions are derived for wave numbers and the wave speeds of the nanorod. The analysis shows that the fourth order strain gradient model gives approximate results over the second order strain gradient model for dynamic analysis. The second order strain gradient model gives a critical wave number at certain wave frequency, where the wave speeds are zero. A relation among the number of waves along the nanorod, the nonlocal scaling parameter (e(0)a), and the length of the nanorod is obtained from the nonlocal second order strain gradient model. The ultrasonic wave characteristics of the nanorod obtained from the nonlocal strain gradient models are compared with the classical continuum model. The dynamic response behavior of nanorods is explained from both the strain gradient models. The effect of e(0)a on the ultrasonic wave behavior of the nanorods is also observed. (C) 2010 American Institute of Physics.
Resumo:
The aim of the paper is to investigate the propagation of a pulse in a micropolar fluid contained in a visco-elastic membrane. It was undertaken with a view to study how closely we can approximate the flow of blood in arteries by the above model. We find that for large Reynolds number, the effect of micropolarity is hardly perceptible, whereas for small Reynolds numbers it is of considerable importance.
Resumo:
In this paper the classical problem of water wave scattering by two partially immersed plane vertical barriers submerged in deep water up to the same depth is investigated. This problem has an exact but complicated solution and an approximate solution in the literature of linearised theory of water waves. Using the Havelock expansion for the water wave potential, the problem is reduced here to solving Abel integral equations having exact solutions. Utilising these solutions,two sets of expressions for the reflection and transmission coefficients are obtained in closed forms in terms of computable integrals in contrast to the results given in the literature which,involved six complicated integrals in terms of elliptic functions. The two different expressions for each coefficient produce almost the same numerical results although it has not been possible to prove their equivalence analytically. The reflection coefficient is depicted against the wave number in a number of figures which almost coincide with the figures available in the literature wherein the problem was solved approximately by employing complementary approximations. (C) 2009 Elsevier B.V. All rights reserved.