984 resultados para translocação de Ca2
Resumo:
The trp gene of Drosophila encodes a subunit of a class of Ca2+-selective light-activated channels that carry the bulk of the phototransduction current. Transient receptor potential (TRP) homologs have been identified throughout animal phylogeny. In vertebrates, TRP-related channels have been suggested to mediate store-operated Ca2+ entry, which is important in Ca2+ homeostasis in a wide variety of cell types. However, the mechanisms of activation and regulation of the TRP channel are not known. Here, we report on the Drosophila inaF gene, which encodes a highly eye-enriched protein, INAF, that appears to be required for TRP channel function. A null mutation in this gene significantly reduces the amount of the TRP protein and, in addition, specifically affects the TRP channel function so as to nearly shut down its activity. The inaF mutation also dramatically suppresses the severe degeneration caused by a constitutively active mutation in the trp gene. Although the reduction in the amount of the TRP protein may contribute to these phenotypes, several lines of evidence support the view that inaF mutations also more directly affect the TRP channel function, suggesting that the INAF protein may have a regulatory role in the channel function.
Resumo:
Blue light regulates plant growth and development, and three photoreceptors, CRY1, CRY2, and NPH1, have been identified. The transduction pathways of these receptors are poorly understood. Transgenic plants containing aequorin have been used to dissect the involvement of these three receptors in the regulation of intracellular Ca2+. Pulses of blue light induce cytosolic Ca2+ transients lasting about 80 s in Arabidopsis and tobacco seedlings. Use of organelle-targeted aequorins shows that Ca2+ increases are limited to the cytoplasm. Blue light treatment of cry1, cry2, and nph1 mutants showed that NPH1, which regulates phototropism, is largely responsible for the Ca2+ transient. The spectral response of the Ca2+ transient is similar to that of phototropism, supporting NPH1 involvement. Furthermore, known interactions between red and blue light and between successive blue light pulses on phototropic sensitivity are mirrored in the blue light control of cytosolic Ca2+ in these seedlings. Our observations raise the possibility that physiological responses regulated by NPH1, such as phototropism, may be transduced through cytosolic Ca2+.
Resumo:
The sperm acrosome reaction is a Ca2+-dependent exocytotic event that is triggered by adhesion to the mammalian eggs zona pellucida. Previous studies using ion-selective fluorescent probes suggested a role of voltage-sensitive Ca2+ channels in acrosome reactions. Here, whole-cell patch clamp techniques are used to demonstrate the expression of functional T-type Ca2+ channels during mouse spermatogenesis. The germ cell T current is inhibited by antagonists of T-type channels (pimozide and amiloride) as well as by antagonists whose major site of action is the somatic cell L-type Ca2+ channel (1,4-dihydropyridines, arylalkylamines, benzothiazapines), as has also been reported for certain somatic cell T currents. In sperm, inhibition of T channels during gamete interaction inhibits zona pellucida-dependent Ca2+ elevations, as demonstrated by ion-selective fluorescent probes, and also inhibits acrosome reactions. These studies directly link sperm T-type Ca2+ channels to fertilization. In addition, the kinetics of channel inhibition by 1,4-dihydropyridines suggests a mechanism for the reported contraceptive effects of those compounds in human males.
Resumo:
In cerebellar Purkinje neurons, -aminobutyric acid (GABA)-mediated inhibitory synaptic transmission undergoes a long-lasting rebound potentiation after the activation of excitatory climbing fiber inputs. Rebound potentiation is triggered by the climbing-fiber-induced transient elevation of intracellular Ca2+ concentration and is expressed as a long-lasting increase of postsynaptic GABAA receptor sensitivity. Herein we show that inhibitors of the Ca2+/calmodulin-dependent protein kinase II (CaM-KII) signal transduction pathway effectively block the induction of rebound potentiation. These inhibitors have no effect on the once established rebound potentiation, on voltage-gated Ca2+ channel currents, or on the basal inhibitory transmission itself. Futhermore, a protein phosphatase inhibitor and the intracellularly applied CaM-KII markedly enhanced GABA-mediated currents in Purkinje neurons. Our results demonstrate that CaM-KII activation and the following phosphorylation are key steps for rebound potentiation.
Resumo:
The mammalian anx7 gene codes for a Ca2+-activated GTPase, which supports Ca2+/GTP-dependent secretion events and Ca2+ channel activities in vitro and in vivo. To test whether anx7 might be involved in Ca2+ signaling in secreting pancreatic cells, we knocked out the anx7 gene in the mouse and tested the insulin-secretory properties of the cells. The nullizygous anx7 (/) phenotype is lethal at embryonic day 10 because of cerebral hemorrhage. However, the heterozygous anx7 (+/) mouse, although expressing only low levels of ANX7 protein, is viable and fertile. The anx7 (+/) phenotype is associated with a substantial defect in insulin secretion, although the insulin content of the islets, is 8- to 10-fold higher in the mutants than in the normal littermate control. We infer from electrophysiological studies that both glucose-stimulated secretion and voltage-dependent Ca2+ channel functions are normal. However, electrooptical recordings indicate that the (+/) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP3)-generating agonists to release intracellular calcium. The principle molecular consequence of lower anx7 expression is a profound reduction in IP3 receptor expression and function in pancreatic islets. The profound increase in islets, cell number, and size may be a means of compensating for less efficient insulin secretion by individual defective pancreatic cells. This is a direct demonstration of a connection between glucose-activated insulin secretion and Ca2+ signaling through IP3-sensitive Ca2+ stores.
Resumo:
Secretion of neurotransmitters is initiated by voltage-gated calcium influx through presynaptic, voltage-gated N-type calcium channels. These channels interact with the SNARE proteins, which are core components of the exocytosis process, via the synaptic protein interaction (synprint) site in the intracellular loop connecting domains II and III of their 1B subunit. Interruption of this interaction by competing synprint peptides inhibits fast, synchronous transmitter release. Here we identify a voltage-dependent, but calcium-independent, enhancement of transmitter release that is elicited by trains of action potentials in the presence of a hyperosmotic extracellular concentration of sucrose. This enhancement of transmitter release requires interaction of SNARE proteins with the synprint site. Our results provide evidence for a voltage-dependent signal that is transmitted by proteinprotein interactions from the N-type calcium channel to the SNARE proteins and enhances neurotransmitter release by altering SNARE protein function.
Resumo:
Chemokines comprise a family of low-molecular-weight proteins that elicit a variety of biological responses including chemotaxis, intracellular Ca2+ mobilization, and activation of tyrosine kinase signaling cascades. A subset of chemokines, including regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1 (MIP-1), and MIP-1, also suppress infection by HIV-1. All of these activities are contingent on interactions between chemokines and cognate seven-transmembrane spanning, G protein-coupled receptors. However, these activities are strongly inhibited by glycanase treatment of receptor-expressing cells, indicating an additional dependence on surface glycosaminoglycans (GAG). To further investigate this dependence, we examined whether soluble GAG could reconstitute the biological activities of RANTES on glycanase-treated cells. Complexes formed between RANTES and a number of soluble GAG failed to induce intracellular Ca2+ mobilization on either glycanase-treated or untreated peripheral blood mononuclear cells and were unable to stimulate chemotaxis. In contrast, the same complexes demonstrated suppressive activity against macrophage tropic HIV-1. Complexes composed of 125I-labeled RANTES demonstrated saturable binding to glycanase-treated peripheral blood mononuclear cells, and such binding could be reversed partially by an anti-CCR5 antibody. These results suggest that soluble chemokineGAG complexes represent seven-transmembrane ligands that do not activate receptors yet suppress HIV infection. Such complexes may be considered as therapeutic formulations for the treatment of HIV-1 infection.
Resumo:
In heart, a robust regulatory mechanism is required to counteract the regenerative Ca2+-induced Ca2+ release from the sarcoplasmic reticulum. Several mechanisms, including inactivation, adaptation, and stochastic closing of ryanodine receptors (RyRs) have been proposed, but no conclusive evidence has yet been provided. We probed the termination process of Ca2+ release by using a technique of imaging local Ca2+ release, or Ca2+ spikes, at subcellular sites; and we tracked the kinetics of Ca2+ release triggered by L-type Ca2+ channels. At 0 mV, Ca2+ release occurred and terminated within 40 ms after the onset of clamp pulses (0 mV). Increasing the open-duration and promoting the reopenings of Ca2+ channels with the Ca2+ channel agonist, FPL64176, did not prolong or trigger secondary Ca2+ spikes, even though two-thirds of the sarcoplasmic reticulum Ca2+ remained available for release. Latency of Ca2+ spikes coincided with the first openings but not with the reopenings of L-type Ca2+ channels. After an initial maximal release, even a multi-fold increase in unitary Ca2+ current induced by a hyperpolarization to 120 mV failed to trigger additional release, indicating absolute refractoriness of RyRs. When the release was submaximal (e.g., at +30 mV), tail currents did activate additional Ca2+ spikes; confocal images revealed that they originated from RyRs unfired during depolarization. These results indicate that Ca2+ release is terminated primarily by a highly localized, use-dependent inactivation of RyRs but not by the stochastic closing or adaptation of RyRs in intact ventricular myocytes.
Resumo:
N-type Ca2+ channels mediate Ca2+ influx, which initiates fast exocytosis of neurotransmitters at synapses, and they interact directly with the SNARE proteins syntaxin and SNAP-25 (synaptosome-associated protein of 25 kDa) through a synaptic protein interaction (synprint) site in the intracellular loop connecting domains II and III of their 1B subunits. Introduction of peptides containing the synprint site into presynaptic neurons reversibly inhibits synaptic transmission, confirming the importance of interactions with this site in synaptic transmission. Here we report a direct interaction of the synprint peptide from N-type Ca2+ channels with synaptotagmin I, an important Ca2+ sensor for exocytosis, as measured by an affinity-chromatography binding assay and a solid-phase immunoassay. This interaction is mediated by the second C2 domain (C2B) of synaptotagmin I, but is not regulated by Ca2+. Using both immobilized recombinant proteins and native presynaptic membrane proteins, we found that the synprint peptide and synaptotagmin competitively interact with syntaxin. This interaction is Ca2+-dependent because of the Ca2+ dependence of the interactions between syntaxin and these two proteins. These results provide a molecular basis for a physical link between Ca2+ channels and synaptotagmin, and suggest that N-type Ca2+ channels may undergo a complex series of Ca2+-dependent interactions with multiple presynaptic proteins during neurotransmission.
Resumo:
Large conductance calcium- and voltage-sensitive K+ (MaxiK) channels share properties of voltage- and ligand-gated ion channels. In voltage-gated channels, membrane depolarization promotes the displacement of charged residues contained in the voltage sensor (S4 region) inducing gating currents and pore opening. In MaxiK channels, both voltage and micromolar internal Ca2+ favor pore opening. We demonstrate the presence of voltage sensor rearrangements with voltage (gating currents) whose movement and associated pore opening is triggered by voltage and facilitated by micromolar internal Ca2+ concentration. In contrast to other voltage-gated channels, in MaxiK channels there is charge movement at potentials where the pore is open and the total charge per channel is 45 elementary charges.
Resumo:
Homologues of Drosophilia transient receptor potential (TRP) have been proposed to be unitary subunits of plasma membrane ion channels that are activated as a consequence of active or passive depletion of Ca2+ stores. In agreement with this hypothesis, cells expressing TRPs display novel Ca2+-permeable cation channels that can be activated by the inositol 1,4,5-trisphosphate receptor (IP3R) protein. Expression of TRPs alters cells in many ways, including up-regulation of IP3Rs not coded for by TRP genes, and proof that TRP forms channels of these and other cells is still missing. Here, we document physical interaction of TRP and IP3R by coimmunoprecipitation and glutathione S-transferase-pulldown experiments and identify two regions of IP3R, F2q and F2g, that interact with one region of TRP, C7. These interacting regions were expressed in cells with an unmodified complement of TRPs and IP3Rs to study their effect on agonist- as well as store depletion-induced Ca2+ entry and to test for a role of their respective binding partners in Ca2+ entry. C7 and an F2q-containing fragment of IP3R decreased both forms of Ca2+ entry. In contrast, F2g enhanced the two forms of Ca2+ entry. We conclude that store depletion-activated Ca2+ entry occurs through channels that have TRPs as one of their normal structural components, and that these channels are directly activated by IP3Rs. IP3Rs, therefore, have the dual role of releasing Ca2+ from stores and activating Ca2+ influx in response to either increasing IP3 or decreasing luminal Ca2+.
Resumo:
The Ca2+ channel 1A-subunit is a voltage-gated, pore-forming membrane protein positioned at the intersection of two important lines of research: one exploring the diversity of Ca2+ channels and their physiological roles, and the other pursuing mechanisms of ataxia, dystonia, epilepsy, and migraine. 1A-Subunits are thought to support both P- and Q-type Ca2+ channel currents, but the most direct test, a null mutant, has not been described, nor is it known which changes in neurotransmission might arise from elimination of the predominant Ca2+ delivery system at excitatory nerve terminals. We generated 1A-deficient mice (1A/) and found that they developed a rapidly progressive neurological deficit with specific characteristics of ataxia and dystonia before dying 34 weeks after birth. P-type currents in Purkinje neurons and P- and Q-type currents in cerebellar granule cells were eliminated completely whereas other Ca2+ channel types, including those involved in triggering transmitter release, also underwent concomitant changes in density. Synaptic transmission in 1A/ hippocampal slices persisted despite the lack of P/Q-type channels but showed enhanced reliance on N-type and R-type Ca2+ entry. The 1A/ mice provide a starting point for unraveling neuropathological mechanisms of human diseases generated by mutations in 1A.
Resumo:
Fast neurotransmission requires that docked synaptic vesicles be located near the presynaptic N-type or P/Q-type calcium channels. Specific proteinprotein interactions between a synaptic protein interaction (synprint) site on N-type and P/Q-type channels and the presynaptic SNARE proteins syntaxin, SNAP-25, and synaptotagmin are required for efficient, synchronous neurotransmitter release. Interaction of the synprint site of N-type calcium channels with syntaxin and SNAP-25 has a biphasic calcium dependence with maximal binding at 1020 M. We report here that the synprint sites of the BI and rbA isoforms of the 1A subunit of P/Q-type Ca2+ channels have different patterns of interactions with synaptic proteins. The BI isoform of 1A specifically interacts with syntaxin, SNAP-25, and synaptotagmin independent of Ca2+ concentration and binds with high affinity to the C2B domain of synaptotagmin but not the C2A domain. The rbA isoform of 1A interacts specifically with synaptotagmin and SNAP-25 but not with syntaxin. Binding of synaptotagmin to the rbA isoform of 1A is Ca2+-dependent, with maximum affinity at 1020 M Ca2+. Although the rbA isoform of 1A binds well to both the C2A and C2B domains of synaptotagmin, only the interaction with the C2A domain is Ca2+-dependent. These differential, Ca2+-dependent interactions of Ca2+ channel synprint sites with SNARE proteins may modulate the efficiency of transmitter release triggered by Ca2+ influx through these channels.
Resumo:
The voltage-gated Ca2+ channels that effect tonic release of neurotransmitter from hair cells have unusual pharmacological properties: unlike most presynaptic Ca2+ channels, they are sensitive to dihydropyridines and therefore are L-type. To characterize these Ca2+ channels, we investigated the expression of L-type 1 subunits in hair cells of the chickens cochlea. In PCRs with five different pairs of degenerate primers, we always obtained 1D products, but only once an 1C product and never an 1S product. A full-length 1D mRNA sequence was assembled from overlapping PCR products; the predicted amino acid sequence of the 1D subunit was about 90% identical to those of the mammalian 1D subunits. In situ hybridization confirmed that the 1D mRNA is present in hair cells. By using a quantitative PCR assay, we determined that the 1D mRNA is 100500 times more abundant than the 1C mRNA. We conclude that most, if not all, voltage-gated Ca2+ channels in hair cells contain an 1D subunit. Furthermore, we propose that the 1D subunit plays a hitherto undocumented role at tonic synapses.
Resumo:
The L-type voltage-gated Ca2+ channels that control tonic release of neurotransmitter from hair cells exhibit unusual electrophysiological properties: a low activation threshold, rapid activation and deactivation, and a lack of Ca2+-dependent inactivation. We have inquired whether these characteristics result from cell-specific splicing of the mRNA for the L-type 1D subunit that predominates in hair cells of the chickens cochlea. The 1D subunit in hair cells contains three uncommon exons: one encoding a 26-aa insert in the cytoplasmic loop between repeats I and II, an alternative exon for transmembrane segment IIIS2, and a heretofore undescribed exon specifying a 10-aa insert in the cytoplasmic loop between segments IVS2 and IVS3. We propose that the alternative splicing of the 1D mRNA contributes to the unusual behavior of the hair cells voltage-gated Ca2+ channels.