1000 resultados para transaction covert channel
Resumo:
We study odd-membered chains of spin-1/2 impurities, with each end connected to its own metallic lead. For antiferromagnetic exchange coupling, universal two-channel Kondo (2CK) physics is shown to arise at low energies. Two overscreening mechanisms are found to occur depending on coupling strength, with distinct signatures in physical properties. For strong interimpurity coupling, a residual chain spin-1/2 moment experiences a renormalized effective coupling to the leads, while in the weak-coupling regime, Kondo coupling is mediated via incipient single-channel Kondo singlet formation. We also investigate models in which the leads are tunnel-coupled to the impurity chain, permitting variable dot filling under applied gate voltages. Effective low-energy models for each regime of filling are derived, and for even fillings where the chain ground state is a spin singlet, an orbital 2CK effect is found to be operative. Provided mirror symmetry is preserved, 2CK physics is shown to be wholly robust to variable dot filling; in particular, the single-particle spectrum at the Fermi level, and hence the low-temperature zero-bias conductance, is always pinned to half-unitarity. We derive a Friedel-Luttinger sum rule and from it show that, in contrast to a Fermi liquid, the Luttinger integral is nonzero and determined solely by the ``excess'' dot charge as controlled by gate voltage. The relevance of the work to real quantum dot devices, where interlead charge-transfer processes fatal to 2CK physics are present, is also discussed. Physical arguments and numerical renormalization-group techniques are used to obtain a detailed understanding of these problems.
Resumo:
Hybrid wireless networks are extensively used in the superstores, market places, malls, etc. and provide high QoS (Quality of Service) to the end-users has become a challenging task. In this paper, we propose a policy-based transaction-aware QoS management architecture in a hybrid wireless superstore environment. The proposed scheme operates at the transaction level, for the downlink QoS management. We derive a policy for the estimation of QoS parameters, like, delay, jitter, bandwidth, availability, packet loss for every transaction before scheduling on the downlink. We also propose a QoS monitor which monitors the specified QoS and automatically adjusts the QoS according to the requirement. The proposed scheme has been simulated in hybrid wireless superstore environment and tested for various superstore transactions. The results shows that the policy-based transaction QoS management is enhance the performance and utilize network resources efficiently at the peak time of the superstore business.
Resumo:
During lightning strike to a tall grounded object (TGO), reflections of current waves are known to occur at either ends of the TGO. These reflection modify the channel current and hence, the lightning electromagnetic fields. This study aims to identify the possible contributing factors to reflection at a TGO-channel junction for the current waves ascending on the TGO. Possible sources of reflection identified are corona sheath and discontinuity of resistance and radius. For analyzing the contribution of corona sheath and discontinuity of resistance at the junction, a macroscopic physical model for the return stroke developed in our earlier work is employed. NEC-2D is used for assessing the contribution of abrupt change in radii at a TGO-channel junction. The wire-cage model adopted for the same is validated using laboratory experiments. Detailed investigation revealed the following. The main contributor for reflection at a TGO-channel junction is the difference between TGO and channel core radii. Also, the discontinuity of resistance at a TGO-channel junction can be of some relevance only for the first microsecond regime. Further, corona sheath does not play any significant role in the reflection.
Resumo:
In this paper we address the problem of transmission of correlated sources over a fading multiple access channel (MAC). We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). Transmission schemes for discrete and Gaussian sources over a fading GMAC are considered. Various power allocation strategies are also compared. Keywords: Fading MAC, Power allocation, Random TDMA, Amplify and Forward, Correlated sources.
Resumo:
The capacity region of a two-user Gaussian Multiple Access Channel (GMAC) with complex finite input alphabets and continuous output alphabet is studied. When both the users are equipped with the same code alphabet, it is shown that, rotation of one of the user’s alphabets by an appropriate angle can make the new pair of alphabets not only uniquely decodable, but will result in enlargement of the capacity region. For this set-up, we identify the primary problem to be finding appropriate angle(s) of rotation between the alphabets such that the capacity region is maximally enlarged. It is shown that the angle of rotation which provides maximum enlargement of the capacity region also minimizes the union bound on the probability of error of the sumalphabet and vice-verse. The optimum angle(s) of rotation varies with the SNR. Through simulations, optimal angle(s) of rotation that gives maximum enlargement of the capacity region of GMAC with some well known alphabets such as M-QAM and M-PSK for some M are presented for several values of SNR. It is shown that for large number of points in the alphabets, capacity gains due to rotations progressively reduce. As the number of points N tends to infinity, our results match the results in the literature wherein the capacity region of the Gaussian code alphabet doesn’t change with rotation for any SNR.
Resumo:
One of the major sources of interference for WLANs operating in 2.4GHz unlicensed ISM is Bluetooth (BT). Though OFDM based WLAN's have features like strong immunity to multipath channel effects, its performance detoriates severely whenever there is BT operating nearby. Even for high SIR (Signal to Interference Ratio), performance does not improve much because WLAN is not able to estimate correctly all its channel parameters in presence of BT interference. So, in this paper, the authors propose an algorithm for estimating BT interference and equivalent channel filter tap values.
Resumo:
In the present work, a thorough investigation of evolution of microstructure and texture has been carried out to elucidate the evolution of texture and grain boundary character distribution (GBCD) during Equal Channel Angular Extrusion (ECAE) of some model two-phase materials, namely Cu-0.3Cr and Cu-40Zn. Texture of Cu-0.3Cr alloy is similar to that reported for pure copper. On the other hand, in Cu-40Zn alloy, texture evolution in α and β (B2) phases are interdependent. In Cu-0.3Cr alloy, there is a considerable decreases in volume fraction of low angle boundaries (LAGBs), only a slight increase in CSL boundaries, but increase in high angle grain boundaries (HAGBs) from 1 pass to 4 passes for both the routes. In the case of Cu-40Zn alloy, there is an appreciable increase in CSL volume fraction.
Resumo:
We consider the problem of distributed joint source-channel coding of correlated Gaussian sources over a Gaussian Multiple Access Channel (MAC). There may be side information at the encoders and/or at the decoder. First we specialize a general result in [16] to obtain sufficient conditions for reliable transmission over a Gaussian MAC. This system does not satisfy the source channel separation. Thus, next we study and compare three joint source channel coding schemes available in literature.
Resumo:
Accurate system planning and performance evaluation requires knowledge of the joint impact of scheduling, interference, and fading. However, current analyses either require costly numerical simulations or make simplifying assumptions that limit the applicability of the results. In this paper, we derive analytical expressions for the spectral efficiency of cellular systems that use either the channel-unaware but fair round robin scheduler or the greedy, channel-aware but unfair maximum signal to interference ratio scheduler. As is the case in real deployments, non-identical co-channel interference at each user, both Rayleigh fading and lognormal shadowing, and limited modulation constellation sizes are accounted for in the analysis. We show that using a simple moment generating function-based lognormal approximation technique and an accurate Gaussian-Q function approximation leads to results that match simulations well. These results are more accurate than erstwhile results that instead used the moment-matching Fenton-Wilkinson approximation method and bounds on the Q function. The spectral efficiency of cellular systems is strongly influenced by the channel scheduler and the small constellation size that is typically used in third generation cellular systems.
Resumo:
Statistical information about the wireless channel can be used at the transmitter side to enhance the performance of MIMO systems. This paper addresses how the concept of channel precoding can be used to enhance the performance of STBCs from Generalized Pseudo Orthogonal Designs which were first introduced by Zhu and Jafarkhani. Such designs include some important classes of STBCs that are directly derivable from Quasi-Orthogonal Designs and Co-ordinate Interleaved Orthogonal Designs.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS Decision Feedback equalizer (DFE). We study how well this equalizer tracks the optimal MMSEDFE (Wiener) equalizer. We model the channel by an Autoregressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, we show via some examples that the LMS equalizer moves close to the instantaneous Wiener filter after initial transience. We also compare the LMS equalizer with the instantaneous optimal DFE (the commonly used Wiener filter) designed assuming perfect previous decisions and computed using perfect channel estimate (we will call it as IDFE). We show that the LMS equalizer outperforms the IDFE almost all the time after initial transience.
Resumo:
High-rate analysis of channel-optimized vector quantizationThis paper considers the high-rate performance of channel optimized source coding for noisy discrete symmetric channels with random index assignment. Specifically, with mean squared error (MSE) as the performance metric, an upper bound on the asymptotic (i.e., high-rate) distortion is derived by assuming a general structure on the codebook. This structure enables extension of the analysis of the channel optimized source quantizer to one with a singular point density: for channels with small errors, the point density that minimizes the upper bound is continuous, while as the error rate increases, the point density becomes singular. The extent of the singularity is also characterized. The accuracy of the expressions obtained are verified through Monte Carlo simulations.