925 resultados para training model
Resumo:
This paper describes a case study of a labor-based ergonomics-training program that makes use of some effective worker training methods. The program focus was on ergonomics awareness and back injury prevention for nursing home workers. It was developed and conducted by a not-for-profit organization affiliated with the Service Employees International Union. Training methods included the train-the-trainer model and the small group activity method. The investigation also compared the program components with those identified by the Occupational Safety and Health Administration (OSHA) as being key elements in effective safety training.
Resumo:
BACKGROUND: The authors have shown that rats can be retrained to swim after a moderately severe thoracic spinal cord contusion. They also found that improvements in body position and hindlimb activity occurred rapidly over the first 2 weeks of training, reaching a plateau by week 4. Overground walking was not influenced by swim training, suggesting that swimming may be a task-specific model of locomotor retraining. OBJECTIVE: To provide a quantitative description of hindlimb movements of uninjured adult rats during swimming, and then after injury and retraining. METHODS: The authors used a novel and streamlined kinematic assessment of swimming in which each limb is described in 2 dimensions, as 3 segments and 2 angles. RESULTS: The kinematics of uninjured rats do not change over 4 weeks of daily swimming, suggesting that acclimatization does not involve refinements in hindlimb movement. After spinal cord injury, retraining involved increases in hindlimb excursion and improved limb position, but the velocity of the movements remained slow. CONCLUSION: These data suggest that the activity pattern of swimming is hardwired in the rat spinal cord. After spinal cord injury, repetition is sufficient to bring about significant improvements in the pattern of hindlimb movement but does not improve the forces generated, leaving the animals with persistent deficits. These data support the concept that force (load) and pattern generation (recruitment) are independent and may have to be managed together with respect to postinjury rehabilitation.
Resumo:
BACKGROUND Microvascular anastomosis is the cornerstone of free tissue transfers. Irrespective of the microsurgical technique that one seeks to integrate or improve, the time commitment in the laboratory is significant. After extensive previous training on several animal models, we sought to identify an animal model that circumvents the following issues: ethical rules, cost, time-consuming and expensive anesthesia, and surgical preparation of tissues required to access vessels before performing the microsurgical training, not to mention that laboratories are closed on weekends. METHODS Between January 2012 and April 2012, a total of 91 earthworms were used for 150 microsurgical training exercises to simulate vascular end-to-side microanastomosis. The training sessions were divided into ten periods of 7 days. Each training session included 15 simulations of end-to-side vascular microanastomoses: larger than 1.5 mm (n=5), between 1.0 and 1.5 mm (n=5), and smaller than 1.0 mm (n=5). A linear model with the main variables being the number of weeks (as a numerical covariate) and the size of the animal (as a factor) was used to determine the trend in time of anastomosis over subsequent weeks as well as the differences between the different size groups. RESULTS The linear model shows a significant trend (p<0.001) in time of anastomosis in the course of the training, as well as significant differences (p<0.001) between the groups of animals of different sizes. For microanastomoses larger than 1.5 mm, the mean anastomosis time decreased from 19.3±1.0 to 11.1±0.4 min between the first and last week of training (decrease of 42.5%). For training with smaller diameters, the results showed a decrease in execution time of 43.2% (diameter between 1.0 and 1.5 mm) and 40.9% (diameter<1.0 mm) between the first and last periods. The study demonstrates an improvement in the dexterity and speed of nodes execution. CONCLUSION The earthworm appears to be a reliable experimental model for microsurgical training of end-to-side microanastomoses. Its numerous advantages are discussed here and we predict training on earthworms will significantly grow and develop in the near future. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Resumo:
PURPOSE Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. METHODS Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. RESULTS A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was [Formula: see text], requiring [Formula: see text] s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. CONCLUSIONS A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis.
Resumo:
Introduction: Dehiscence of the suture line of an anastomosis can lead to reoperation, temporary or permanent stoma, and even sepsis or death. Few techniques for the laboratory training of tubular anastomosis use ex-vivo animal tissues. We describe a novel model that can be used in the laboratory for the training of anastomosis in tubular tissues and objectively assess any anastomotic leak. [See PDF for complete abstract]
Resumo:
Motivation is a core concept to understand work related outcomes and vocational pursuits. However, existing research mostly focused on specific aspects of motivation, such as goals or self-efficacy beliefs, while falling short of adequately addressing more complex and integrative notions of motivation. Advancing the current state of research, we draw from Motivational Systems Theory and a model of proactive motivation to propose a comprehensive model of work-related motivation. Specifically, we define motivation as a system of mutually related factors consisting of goals, emotions, and personal agency beliefs, comprised by capability beliefs and context evaluations. Adapting this model of motivation to the school-to-work transition, we postulate that this motivational system is affected by different social, personal, and environmental variables, for example social support, the presence of role-models, personality traits, and scholastic achievement. We further expect that students with more autonomous work-related goals, expectations of more positive emotional experiences in their future working life, fewer perceived barriers to their career development, and higher work-related self-efficacy beliefs would be more successful in their transition from school to work. We also propose that goal-directed engagement acts as a partial mediator in the relationship between motivation and a successful transition. Finally, we hypothesize that work-related motivation while in school will have meaningful effects on positive outcomes while in vocational training, as represented by more work engagement, higher career commitment, job satisfaction, and lower intentions to quit training. In sum, we advance the point that the adaptation of a broader concept of work-related motivation in the school-to-work transition would result in more powerful predictions of success in this transition and would enhance scientific research and interventions in career development and counselling practice.
Resumo:
We present a fully automatic segmentation method for multi-modal brain tumor segmentation. The proposed generative-discriminative hybrid model generates initial tissue probabilities, which are used subsequently for enhancing the classi�cation and spatial regularization. The model has been evaluated on the BRATS2013 training set, which includes multimodal MRI images from patients with high- and low-grade gliomas. Our method is capable of segmenting the image into healthy (GM, WM, CSF) and pathological tissue (necrotic, enhancing and non-enhancing tumor, edema). We achieved state-of-the-art performance (Dice mean values of 0.69 and 0.8 for tumor subcompartments and complete tumor respectively) within a reasonable timeframe (4 to 15 minutes).
Resumo:
The cellular mechanisms through which adult rat skeletal muscle protein is regulated during resistance exercise and training was investigated. A model of non-voluntary resistance exercise was described which involves the electrically-stimulated contraction of the lower leg muscles of anesthetized rats against a weighted pulley-bar. Muscle protein synthesis rates were measured by in vivo constant infusion of $\sp3$H-leucine following a single bout of resistance exercise. Specific messenger RNA levels were determined by dot-blot hybridization analysis using $\sp{32}$P-labelled DNA probes after a single bout and multiple bouts of phasic training. The effects of phasic training on increasing skeletal muscle mass was assessed. Between 12 and 36 hours following a single resistance exercise bout (24-192 contractions), total mixed and myofibril protein synthesis rates were significantly increase (32%-65%) after concentric (gastrocnemius m.) and eccentric (tibialis anterior m.) contractions. Eccentric contractions had greater effects on myofibril synthesis with more prolonged increases in synthesis rates. Lower numbers of eccentric than concentric contractions were required to increase synthesis. Cellular RNA was increased after exercise but the relative levels of skeletal $\alpha$-actin and cytochrome c mRNAs were unchanged. Since increases in synthesis rates exceeded increases in RNA, post-transcriptional mechanisms may be primarily responsible for increased protein synthesis after a resistance exercise bout. After 10-22 weeks of phasic eccentric resistance training, muscle enlargement (16%-30%) was produced in the tibialis anterior m. after all training paradigms examined. In contrast, gastrocnemius m. enlargement after phasic concentric training occurred after moderate (24/bout) but not after high (192/bout) repetition training. The absence of muscle growth in the gastrocnemius m. after high repetition training despite increased synthesis rates after the initial bout and RNA and possibly mRNA accumulation during training suggests a role for post-translational mechanisms (protein degradation) in the control of muscle growth in the gastrocnemius m. It is concluded that muscle protein during resistance exercise and training is regulated at several cellular levels. The particular response may be influenced by the exercise intensity and duration, the training frequency and the type of contractile work (eccentric vs. concentric) performed. ^
Resumo:
Automated identification of vertebrae from X-ray image(s) is an important step for various medical image computing tasks such as 2D/3D rigid and non-rigid registration. In this chapter we present a graphical model-based solution for automated vertebra identification from X-ray image(s). Our solution does not ask for a training process using training data and has the capability to automatically determine the number of vertebrae visible in the image(s). This is achieved by combining a graphical model-based maximum a posterior probability (MAP) estimate with a mean-shift based clustering. Experiments conducted on simulated X-ray images as well as on a low-dose low quality X-ray spinal image of a scoliotic patient verified its performance.
Resumo:
In this paper, reconstruction of three-dimensional (3D) patient-specific models of a hip joint from two-dimensional (2D) calibrated X-ray images is addressed. Existing 2D-3D reconstruction techniques usually reconstruct a patient-specific model of a single anatomical structure without considering the relationship to its neighboring structures. Thus, when those techniques would be applied to reconstruction of patient-specific models of a hip joint, the reconstructed models may penetrate each other due to narrowness of the hip joint space and hence do not represent a true hip joint of the patient. To address this problem we propose a novel 2D-3D reconstruction framework using an articulated statistical shape model (aSSM). Different from previous work on constructing an aSSM, where the joint posture is modeled as articulation in a training set via statistical analysis, here it is modeled as a parametrized rotation of the femur around the joint center. The exact rotation of the hip joint as well as the patient-specific models of the joint structures, i.e., the proximal femur and the pelvis, are then estimated by optimally fitting the aSSM to a limited number of calibrated X-ray images. Taking models segmented from CT data as the ground truth, we conducted validation experiments on both plastic and cadaveric bones. Qualitatively, the experimental results demonstrated that the proposed 2D-3D reconstruction framework preserved the hip joint structure and no model penetration was found. Quantitatively, average reconstruction errors of 1.9 mm and 1.1 mm were found for the pelvis and the proximal femur, respectively.
Resumo:
In training networks, particularly small and medium-sized enterprises pool their resources to train apprentices within the framework of the dual VET system, while an intermediary organisation is tasked with managing operations. Over the course of their apprenticeship, the apprentices switch from one training company to another on a (half-) yearly basis. Drawing on a case study of four training networks in Switzerland and the theoretical framework of the sociology of conventions, this paper aims to understand the reasons for the slow dissemination and reluctant adoption of this promising form of organising VET in Switzerland. The results of the study show that the system of moving from one company to another creates a variety of free-rider constellations in the distribution of the collectively generated corporative benefits. This explains why companies are reluctant to participate in this model. For the network to be sustainable, the intermediary organisation has to address discontent arising from free-rider problems while taking into account that the solutions found are always tentative and will often result in new free-rider problems.
Resumo:
This paper presents a non-rigid free-from 2D-3D registration approach using statistical deformation model (SDM). In our approach the SDM is first constructed from a set of training data using a non-rigid registration algorithm based on b-spline free-form deformation to encode a priori information about the underlying anatomy. A novel intensity-based non-rigid 2D-3D registration algorithm is then presented to iteratively fit the 3D b-spline-based SDM to the 2D X-ray images of an unseen subject, which requires a computationally expensive inversion of the instantiated deformation in each iteration. In this paper, we propose to solve this challenge with a fast B-spline pseudo-inversion algorithm that is implemented on graphics processing unit (GPU). Experiments conducted on C-arm and X-ray images of cadaveric femurs demonstrate the efficacy of the present approach.
Resumo:
Community health workers (CHWs) can serve as a bridge between healthcare providers and communities to positively impact social determinants of health and, thus, the overall health of the population. The potential to effect lasting change is particularly significant within resource-poor settings with limited access to formally trained health care providers such as the small, rural village of Santa Ana Intibucá, Honduras and surrounding areas—located on the geographically and politically isolated border of Honduras and El Salvador. The Baylor Shoulder to Shoulder Foundation (BSTS) works in conjunction with Santa Ana's volunteer health committee to bring a health brigade that has provided health care and public health projects to the area at least twice a year since 2001. They have also hired a full-time Honduran physician, a Honduran in-country administrative director, and built a clinic; yet, no community health worker program exists. This CHW program model is the response to a clear need for a CHW program within the area served by BSTS and presents a CHW program model specific to Santa Ana Intibucá and surrounding areas to be implemented by BSTS. Methods used to develop this model include reviewing the literature for recommendations from leading authorities as well as successfully implemented CHW programs in comparable regions. This information was incorporated into existing knowledge and materials currently being used in the area. Using the CHW model proposed here, each brigade, in conjunction with the communities served, can help develop new modules to respond to the specific health priorities of the region at that time, incorporating consistent modes of contact with the local physician and the CHWs to provide refresher courses, training in new topics of interest, and to be reminded of the importance of community health workers' role as the critical link to healthy societies. With cooperation, effort, and support, the brigade can continue to help integrate a sustainable CHW system in which communities may be able to maximize the care they receive while also learning to care for their own health and the future of their communities.^
Resumo:
Background. The United Nations' Millennium Development Goal (MDG) 4 aims for a two-thirds reduction in death rates for children under the age of five by 2015. The greatest risk of death is in the first week of life, yet most of these deaths can be prevented by such simple interventions as improved hygiene, exclusive breastfeeding, and thermal care. The percentage of deaths in Nigeria that occur in the first month of life make up 28% of all deaths under five years, a statistic that has remained unchanged despite various child health policies. This paper will address the challenges of reducing the neonatal mortality rate in Nigeria by examining the literature regarding efficacy of home-based, newborn care interventions and policies that have been implemented successfully in India. ^ Methods. I compared similarities and differences between India and Nigeria using qualitative descriptions and available quantitative data of various health indicators. The analysis included identifying policy-related factors and community approaches contributing to India's newborn survival rates. Databases and reference lists of articles were searched for randomized controlled trials of community health worker interventions shown to reduce neonatal mortality rates. ^ Results. While it appears that Nigeria spends more money than India on health per capita ($136 vs. $132, respectively) and as percent GDP (5.8% vs. 4.2%, respectively), it still lags behind India in its neonatal, infant, and under five mortality rates (40 vs. 32 deaths/1000 live births, 88 vs. 48 deaths/1000 live births, 143 vs. 63 deaths/1000 live births, respectively). Both countries have comparably low numbers of healthcare providers. Unlike their counterparts in Nigeria, Indian community health workers receive training on how to deliver postnatal care in the home setting and are monetarily compensated. Gender-related power differences still play a role in the societal structure of both countries. A search of randomized controlled trials of home-based newborn care strategies yielded three relevant articles. Community health workers trained to educate mothers and provide a preventive package of interventions involving clean cord care, thermal care, breastfeeding promotion, and danger sign recognition during multiple postnatal visits in rural India, Bangladesh, and Pakistan reduced neonatal mortality rates by 54%, 34%, and 15–20%, respectively. ^ Conclusion. Access to advanced technology is not necessary to reduce neonatal mortality rates in resource-limited countries. To address the urgency of neonatal mortality, countries with weak health systems need to start at the community level and invest in cost-effective, evidence-based newborn care interventions that utilize available human resources. While more randomized controlled studies are urgently needed, the current available evidence of models of postnatal care provision demonstrates that home-based care and health education provided by community health workers can reduce neonatal mortality rates in the immediate future.^
Resumo:
El artículo analiza la utilización de las Tecnologías de la Información y Comunicación en el escenario de algunos países europeos en el ámbito de la Orientación Educativa y Profesional.