948 resultados para tidal inlets
Resumo:
The seasonal dynamics of molybdenum (Mo) were studied in the water column of two tidal basins of the German Wadden Sea (Sylt-Rømø and Spiekeroog) between 2007 and 2011. In contrast to its conservative behaviour in the open ocean, both, losses of more than 50% of the usual concentration level of Mo in seawater and enrichments up to 20% were observed repeatedly in the water column of the study areas. During early summer, Mo removal by adsorption on algae-derived organic matter (e.g. after Phaeocystis blooms) is postulated to be a possible mechanism. Mo bound to organic aggregates is likely transferred to the surface sediment where microbial decomposition enriches Mo in the pore water. First δ98/95Mo data of the study area disclose residual Mo in the open water column being isotopically heavier than MOMo (Mean Ocean Molybdenum) during a negative Mo concentration anomaly, whereas suspended particulate matter shows distinctly lighter values. Based on field observations a Mo isotope enrichment factor of ε = −0.3‰ has been determined which was used to argue against sorption on metal oxide surfaces. It is suggested here that isotope fractionation is caused by biological activity and association to organic matter. Pelagic Mo concentration anomalies exceeding the theoretical salinity-based concentration level, on the other hand, cannot be explained by replenishment via North Sea waters alone and require a supply of excess Mo. Laboratory experiments with natural anoxic tidal flat sediments and modelled sediment displacement during storm events suggest fast and effective Mo release during the resuspension of anoxic sediments in oxic seawater as an important process for a recycling of sedimentary sulphide bound Mo into the water column.
Resumo:
The aim of the present study was to investigate the effects of different speech tasks (recitation of prose (PR), alliteration (AR) and hexameter (HR) verses) and a control task (mental arithmetic (MA) with voicing of the result) on endtidal CO2 (ET-CO2), cerebral hemodynamics; i.e. total hemoglobin (tHb) and tissue oxygen saturation (StO2). tHb and StO2 were measured with a frequency domain near infrared spectrophotometer (ISS Inc., USA) and ET-CO2 with a gas analyzer (Nellcor N1000). Measurements were performed in 24 adult volunteers (11 female, 13 male; age range 22 to 64 years) during task performance in a randomized order on 4 different days to avoid potential carry over effects. Statistical analysis was applied to test differences between baseline, 2 recitation and 5 recovery periods. The two brain hemispheres and 4 tasks were tested separately. Data analysis revealed that during the recitation tasks (PR, AR and HR) StO2 decreased statistically significant (p < 0.05) during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. tHb showed a significant decrease during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased significantly. A significant decrease in ET-CO2 was found during all 4 tasks with the smallest decrease during the MA task. In conclusion, we hypothesize that the observed changes in tHb and StO2 are mainly caused by an altered breathing during the tasks that led a lowering of the CO2 content in the blood provoked a cerebral CO2 reaction, i.e. a vasoconstriction of blood vessels due to decreased CO2 pressure and thereby decrease in cerebral blood volume. Therefore, breathing changes should be monitored during brain studies involving speech when using functional near infrared spectroscopy (fNIRS) to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Resumo:
Large calving events at Greenland's largest outlet glaciers are associated with glacial earthquakes and near instantaneous increases in glacier flow speed. At some glaciers and ice streams, flow is also modulated in a regular way by ocean tidal forcing at the terminus. At Helheim Glacier, analysis of geodetic data shows decimeter-level periodic position variations in response to tidal forcing. However, we also observe transient increases of more than 100% in the glacier's responsiveness to such tidal forcing following glacial-earthquake calving events. The timing and amplitude of the changes correlate strongly with the step-like increases in glacier speed and longitudinal strain rate associated with glacial earthquakes. The enhanced response to the ocean tides may be explained by a temporary disruption of the subglacial drainage system and a concomitant reduction of the friction at the ice-bedrock interface, and suggests a new means by which geodetic data may be used to infer glacier properties. Citation: de Juan, J., et al. (2010), Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier, Geophys. Res. Lett., 37, L12501, doi: 10.1029/2010GL043289.
Resumo:
Jakobshavns Glacier, a floating outlet glacier on the West Greenland coast, was surveyed during July 1976. The vertical displacements of targets along two profiles perpendicular to the fjord wall bounding the north margin of the glacier were analyzed to determine the effect of flexure caused by tidal oscillations within the fjord. An analysis based on the assumption that vertical displacements of the glacier reflected pure elastic bending yielded the conclusion that the effective thickness of the ice (i.e., the thickness which remained unaffected by surface and basal cracking and which behaved as a continuum) was ∼160 m 2.6 km upglacier from the calving front and ∼110 m 0.6 km from the calving front. An analysis based on the more realistic assumption that observed bending reflected elastic and viscoplastic deformation yielded the conclusion that the average effective thickness of the ice was 316 ± 74 m (∼40% of the estimated 800-m total thickness) 2.6 km from the calving front and 160 ± 48 m (∼21% of the estimated 750-m total) 0.6 km from the calving front. A constitutive relationship appropriate for hard glide during flexure was used.
Resumo:
An easily implemented extension of the standard response method of tidal analysis is outlined. The modification improves the extraction of both the steady and the tidal components from problematic time series by calculating tidal response weights uncontaminated by missing or anomalous data. Examples of time series containing data gaps and anomalous events are analyzed to demonstrate the applicability and advantage of the proposed method.
Computer model simulation of alveolar phase III slopes: Implications for tidal single-breath washout
Resumo:
INTRODUCTION Monitoring breathing pattern is especially relevant in infants with lung disease. Recently, a vest-based inductive plethysmograph system (FloRight®) has been developed for tidal breathing measurement in infants. We investigated the accuracy of tidal breathing flow volume loop (TBFVL) measurements in healthy term-born infants and infants with lung disease by the vest-based system in comparison to an ultrasonic flowmeter (USFM) with a face mask. We also investigated whether the system discriminates between healthy infants and those with lung disease. METHODS Floright® measures changes in thoracoabdominal volume during tidal breathing through magnetic field changes generated by current-carrying conductor coils in an elastic vest. Simultaneous TBFVL measurements by the vest-based system and the USFM were performed at 44 weeks corrected postmenstrual age during quiet unsedated sleep. TBFVL parameters derived by both techniques and within both groups were compared. RESULTS We included 19 healthy infants and 18 infants with lung disease. Tidal volume per body weight derived by the vest-based system was significantly lower with a mean difference (95% CI) of -1.33 ml/kg (-1.73; -0.92), P < 0.001. Respiratory rate and ratio of time to peak tidal expiratory flow over total expiratory time (tPTEF/tE) did not differ between the two techniques. Both systems were able to discriminate between healthy infants and those with lung disease using tPTEF/tE. CONCLUSION FloRight® accurately measures time indices and may discriminate between healthy infants and those with lung disease, but demonstrates differences in tidal volume measurements. It may be better suited to monitor breathing pattern than for TBFVL measurements.
Resumo:
Summer nighttime abundance and localized distribution of fishes in a tidal cove were studied by beach seining for comparison with a previous daytime study. American eels were relatively abundant at night and absent during the day. Alewife, blueback herring, and Atlantic silver-side were more abundant in the cove at night. Although mummichog numbers were greatly reduced at night, they remained an important constituent of the night fauna. Lesser components of the night fauna included Atlantic herring, Atlantic tomcod, smooth flounder, winter flounder, and rainbow smelt.
Resumo:
The daytime abundance and localized distribution of fishes in relation to temperature were studied in a small tidal cove by beach seining on seven dates in the Back River estuary, Maine, during the summers of 1971 and 1972. Temperatures on the seven dates ranged from 15.1–26.2 C, and salinities ranged from 17.3–24.7‰. Eighteen species of fishes were captured, with mummichogs, smooth flounders, Atlantic silversides and Atlantic herring together comprising over 98% of the catch. Mummichogs and Atlantic silversides were captured primarily near the inner end of the cove, while other abundant species were caught mainly at the outer end of the cove. Several species seem well adapted to naturally warm cove temperatures. Others seem now virtually excluded because of warm temperatures. Winter flounder, Atlantic herring, and Atlantic tomcod might be excluded from the cove during daytime in summer if artificial warming of the cove were permitted.
Resumo:
This study characterises the shape of the flow separation zone (FSZ) and wake region over large asymmetric bedforms under tidal flow conditions. High resolution bathymetry, flow velocity and turbulence data were measured along two parallel transects in a tidal channel covered with bedforms. The field data are used to verify the applicability of a numerical model for a systematic study using the Delft3D modelling system and test the model sensitivity to roughness length. Three experiments are then conducted to investigate how the FSZ size and wake extent vary depending on tidally-varying flow conditions, water levels and bathymetry. During the ebb, a large FSZ occurs over the steep lee side of each bedform. During the flood, no flow separation develops over the bedforms having a flat crest; however, a small FSZ is observed over the steepest part of the crest of some bedforms, where the slope is locally up to 15°. Over a given bedform morphology and constant water levels, no FSZ occurs for velocity magnitudes smaller than 0.1 m s**-1; as the flow accelerates, the FSZ reaches a stable size for velocity magnitudes greater than 0.4 m s**-1. The shape of the FSZ is not influenced by changes in water levels. On the other hand, variations in bed morphology, as recorded from the high-resolution bathymetry collected during the tidal cycle, influence the size and position of the FSZ: a FSZ develops only when the maximum lee side slope over a horizontal distance of 5 m is greater than 10°. The height and length of the wake region are related to the length of the FSZ. The total roughness along the transect lines is an order of magnitude larger during the ebb than during the flood due to flow direction in relation to bedform asymmetry: during the ebb, roughness is created by the large bedforms because a FSZ and wake develops over the steep lee side. The results add to the understanding of hydrodynamics of natural bedforms in a tidal environment and may be used to better parameterise small-scale processes in large-scale studies.