964 resultados para thyroid antibody
Resumo:
New anti-cancer agents are being developed that specifically recognise tumour cells. Recognition is dependent upon the enhanced expression of antigenic determinants on the surface of tumour cells. The tumour exposure and the extracellular accessibility of the mucin MUC-1 make this marker a suitable target for tumour diagnosis and therapy. We isolated and characterised six human scFv antibody fragments that bound to the MUC-1 core protein, by selecting a large naive human phage display library directly on a MUC-1-expressing breast carcinoma cell line. Their binding characteristics have been studied by ELISA, FACS and indirect immunofluorescence. The human scFv antibody fragments were specific for the tandem repeat region of MUC-1 and their binding is inhibited by soluble antigen. Four human scFv antibody fragments (M2, M3, M8, M12) recognised the hydrophilic PDTRP region of the MUC-1 core protein, which is thought to be an immunodominant region. The human scFv antibody fragments were stable in human serum at 37 degrees C and retained their binding specificity. For imaging or targeting to tumours over-expressing MUC-1, it might be feasible to use these human scFv, or multivalent derivatives, as vehicles to deliver anti-cancer agents.
Resumo:
In Switzerland, individuals exposed to the risk of activity intake are required to perform regular monitoring. Monitoring consists in a screening measurement and is meant to be performed using commonly available laboratory instruments. More particularly, iodine intake is measured using a surface contamination monitor. The goal of the present paper is to report the calibration method developed for thyroid screening instruments. It consists of measuring the instrument response to a known activity located in the thyroid gland of a standard neck phantom. One issue of this procedure remains that the iodine radioisotopes have a short half-life. Therefore, the adequacy and limitations to simulate the short-lived radionuclides with so-called mock radionuclides of longer half-life were also evaluated. In light of the results, it has been decided to use only the appropriate iodine sources to perform the calibration.
Resumo:
Antibody-drug conjugates (ADC) are emerging as powerful treatment strategies with outstanding target-specificity and high therapeutic activity in patients with cancer. Brentuximab vedotin represents a first-in-class ADC directed against CD30(+) malignancies. We hypothesized that its sustained clinical responses could be related to the stimulation of an anticancer immune response. In this study, we demonstrate that the dolastatin family of microtubule inhibitors, from which the cytotoxic component of brentuximab vedotin is derived, comprises potent inducers of phenotypic and functional dendritic cell (DC) maturation. In addition to the direct cytotoxic effect on tumor cells, dolastatins efficiently promoted antigen uptake and migration of tumor-resident DCs to the tumor-draining lymph nodes. Exposure of murine and human DCs to dolastatins significantly increased their capacity to prime T cells. Underlining the requirement of an intact host immune system for the full therapeutic benefit of dolastatins, the antitumor effect was far less pronounced in immunocompromised mice. We observed substantial therapeutic synergies when combining dolastatins with tumor antigen-specific vaccination or blockade of the PD-1-PD-L1 and CTLA-4 coinhibitory pathways. Ultimately, treatment with ADCs using dolastatins induces DC homing and activates cellular antitumor immune responses in patients. Our data reveal a novel mechanism of action for dolastatins and provide a strong rationale for clinical treatment regimens combining dolastatin-based therapies, such as brentuximab vedotin, with immune-based therapies. Cancer Immunol Res; 2(8); 741-55. ©2014 AACR.
Resumo:
This communication reports the specific induction of calmodulin kinase IV by the thyroid hormone 3,3',5-triiodo-L-thyronine (T3) in a time- and concentration-dependent manner at a very early stage of brain differentiation using a fetal rat telencephalon primary cell culture system, which can grow and differentiate under chemically defined conditions. The induction of the enzyme that can be observed both on the mRNA and on the protein level is T3-specific, i.e. it cannot be induced by retinoic acid or reverse T3, and can be inhibited on both the transcriptional and the translational level by adding to the culture medium actinomycin D or cycloheximide, respectively. The earliest detection of calmodulin kinase IV in the fetal brain tissue of the rat is at days E16/E17, both on the mRNA as well as on the protein level. This is the first report in which a second messenger-dependent kinase involved in the control of cell regulatory processes is itself controlled by a primary messenger, the thyroid hormone.
Resumo:
To combine the advantage of both the tumor targeting capacity of high affinity monoclonal antibodies (mAbs) and the potent killing properties of cytotoxic T lymphocytes (CTL), we investigated the activity of conjugates made by coupling single Fab' fragments, from mAbs specific for tumor cell surface antigens, to monomeric HLA-A2 complexes containing the immunodominant influenza-matrix peptide 58-66. In solution, the monovalent 95 kDa Fab-HLA-A2/Flu conjugates did not activate influenza-specific CTL. However, when targeted to tumor cells expressing the relevant tumor-associated antigen, the conjugates induced CTL activation and efficient tumor cell lysis, as a result of MHC/peptide surface oligomerization. The highly specific and sensitive in vitro cytotoxicity results presented suggest that injection of Fab-MHC/peptide conjugates could represent a new form of immunotherapy, bridging antibody and T lymphocyte attack on cancer cells.
Resumo:
The effects of thyroid hormones on the nervous system are mediated by the presence of nuclear T3 receptors (NT3R). In this study, the expression of NT3R was investigated in spinal cord, dorsal root ganglia (DRG), or sciatic nerve of adult rats after immunostaining with a 2B3-NT3R monoclonal antibody which recognizes both alpha and beta types of NT3R. The specificity of this monoclonal antibody was confirmed by Western blots. The 2B3-NT3R monoclonal antibody recognized one band corresponding to a molecular weight of 57 kDa in extract of spinal cord or DRG. No staining was observed on immunoblot of intact sciatic nerve. In the spinal cord, the nuclei of the neurons and glial cells including both astrocytes and oligodendrocytes exhibited 2B3-NT3R immunoreactivity. While all the nuclei of the DRG sensory neurons expressed the NT3R, all the nuclei of the satellite and Schwann cells were devoid of any immunoreaction. In the sciatic nerve, the nuclei of the Schwann cells also lacked 2B3-NT3R-immunoreactivity. After sciatic nerve transection in vivo, Schwann cell nuclei, which never expressed NT3R in intact nerves of adult rats, displayed a clear 2B3-NT3R immunoreaction in proximal and distal stumps adjacent to the section. Double immunostaining with antibodies raised to 3-sulfogalactosylceramide or S100 confirmed that most of the NT3R containing nuclei belong to Schwann cells. In dissociated cell cultures grown in vitro from sciatic nerves, Schwann cells exhibited 2B3-NT3R immunoreactivity. These data suggest that the inhibition of NT3R expression in Schwann cells ensheathing axons in intact nerve is reversed when the axons are degenerating or lacking.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Philander opossum and Didelphis marsupialis considered the most ancient mammals and an evolutionary success, maintain parasitism by Trypanosoma cruzi without developing any apparent disease or important tissue lesion. In order to elucidate this well-balanced interaction, we decided to compare the humoral immune response kinetics of the two didelphids naturally and experimentally infected with T. cruzi and immunized by different schedules of parasite antigens, employing an indirect fluorescence antibody test (IFAT). Both didelphids responded with high serological titers to different immunization routes, while the earliest response occurred with the intradermic route. Serological titers of naturally infected P. opossum showed a significant individual variation, while those of D. marsupialis remained stable during the entire follow-up period. The serological titers of the experimentally infected animals varied according to the inoculated strain. Our data suggest that (1) IFAT was sensitive for follow-up of P. opossum in natural and experimental T. cruzi infections; (2) both P. opossum and D. marsupialis are able to mount an efficient humoral immune response as compared to placental mammals; (3) experimentally infected P. opossum and D. marsupialis present distinct patterns of infection, depending on the subpopulation of T. cruzi, (4) the differences observed in the humoral immune responses between P. opossum and D. marsupialis, probably, reflect distinct strategies selected by these animals during their coevolution with T. cruzi.
Resumo:
Segons resultats de fases II amb inhibidors tirosina quinasa i el coneixement de les alteracions moleculars de la carcinogènesis tiroïdal, es va dissenyar un estudi retrospectiu de pacients amb càncer de tiroide metastàtic tractats amb sorafenib. S’analitzaren la taxa de respostes, toxicitat, supervivència i la correlació amb els marcadors tumorals de 34 pacients. Segons subtipus histològic, la taxa de respostes va ser 47% en medul•lars, 19% en diferenciats i 33% en anaplàsics. La mitjana de supervivència-lliure-de-progressió va ser 13.5, 10.5 i 4.4 mesos, respectivament. Es va observar correlació significativa entre la reducció dels nivells de marcador tumoral i la resposta. El perfil de toxicitat va ser favorable.
Resumo:
Fixation enhances cellular morphology and reduces loss of molecules during tissue processing. Antibodies against fixation-resistant epitopes are very useful, because they allow an immunocytochemical detection in tissue of better preserved morphology. However, fixatives can alter antigenicity and adversely affect the result of immunohistochemical procedures. To address this problem, this study examined the feasibility of generating antibodies to a paraformaldehyde-fixed antigen for use in immunohistochemical procedures. The large subunit of neurofilament proteins was selected for this study. Crude neurofilament proteins were isolated and separated by SDS-polyacrylamide gel electrophoresis. The large subunit of neurofilaments (NF-H) was electroeluted from the electrophoresis gel and exposed to paraformaldehyde, and used for immunization of a rabbit. The rabbit antiserum was affinity purified on CNBr-sepharose immobilized neurofilament proteins. On Western blots, the antibody reacted with the NF-H protein in a phosphorylation-dependent manner. In aldehyde-fixed cerebellum, the antibody strongly stained axons. In contrast, in alcohol-fixed cryostat sections the immunocytochemical detection was substantially reduced. The procedure presented in this study, involving a simple pretreatment of the immunogen, allows for the generation of an antibody that may be used in immunohistochemical studies where localization of the immunogen may be reduced or even lost by aldehyde fixation.
Resumo:
This study was undertaken to evaluate an enzyme immunoassay (EIA) for hepatitis C virus antibody detection (anti-HCV), using just one antigen. Anti-HCV EIA was designed to detect anti-HCV IgG using on the solid-phase a recombinant C22 antigen localized at the N-terminal end of the core region of HCV genome, produced by BioMérieux. The serum samples diluted in phosphate buffer saline were added to wells coated with the C22, and incubated. After washings, the wells were loaded with conjugated anti-IgG, and read in a microtiter plate reader (492 nm). Serum samples of 145 patients were divided in two groups: a control group of 39 patients with non-C hepatitis (10 acute hepatitis A, 10 acute hepatitis B, 9 chronic hepatitis B, and 10 autoimmune hepatitis) and a study group consisting of 106 patients with chronic HCV hepatitis. In the study group all patients had anti-HCV detected by a commercially available EIA (Abbott®), specific for HCV structural and nonstructural polypeptides, alanine aminotransferase elevation or positive serum HCV-RNA detected by nested-PCR. They also had a liver biopsy compatible with chronic hepatitis. The test was positive in 101 of the 106 (95%) sera from patients in the study group and negative in 38 of the 39 (97%) sera from those in the control group, showing an accuracy of 96%. According to these results, our EIA could be used to detect anti-HCV in the serum of patients infected with hepatitis C virus.
Resumo:
TNFRSF13B encodes transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), a B cell- specific tumor necrosis factor (TNF) receptor superfamily member. Both biallelic and monoallelic TNFRSF13B mutations were identified in patients with common variable immunodeficiency disorders. The genetic complexity and variable clinical presentation of TACI deficiency prompted us to evaluate the genetic, immunologic, and clinical condition in 50 individuals with TNFRSF13B alterations, following screening of 564 unrelated patients with hypogammaglobulinemia. We identified 13 new sequence variants. The most frequent TNFRSF13B variants (C104R and A181E; n=39; 6.9%) were also present in a heterozygous state in 2% of 675 controls. All patients with biallelic mutations had hypogammaglobulinemia and nearly all showed impaired binding to a proliferation-inducing ligand (APRIL). However, the majority (n=41; 82%) of the pa-tients carried monoallelic changes in TNFRSF13B. Presence of a heterozygous mutation was associated with antibody deficiency (P< .001, relative risk 3.6). Heterozygosity for the most common mutation, C104R, was associated with disease (P< .001, relative risk 4.2). Furthermore, heterozygosity for C104R was associated with low numbers of IgD(-)CD27(+) B cells (P= .019), benign lymphoproliferation (P< .001), and autoimmune complications (P= .001). These associations indicate that C104R heterozygosity increases the risk for common variable immunodeficiency disorders and influences clinical presentation.
Resumo:
"Mal de Cadeiras", an enzootic disease caused by Trypanosoma evansi, is one of the most important trypanosomiases in the Brazilian Pantanal region. The disease affects mainly horses, which are widely used in extensive cattle production, an activity of greatest economical significance for the region. The parasite also infects sylvan (coatis and capybaras) and domestic (dogs) animals, respectively considered wild and domestic reservoirs of T. evansi. For a better understanding of the interaction of T. evansi with its rodent host, we evaluated the differences in the specific antibody level patterns and in the parasitic peptides recognition patterns of experimentally infected Wistar rats. The rats experimentally infected with T. evansi isolates obtained from coatis, dogs and horses were submitted to indirect immunofluorescence test (IgM e IgG) and Western blotting. The serological titers for IgM and IgG ranged between 1:40 and 1:160. The most recognized polypeptide profiles were in a range of 17 and 74 kDa. Our data suggest that the humoral immune response in Wistar rats is not sufficient for granting an effective control of T. evansi infections.