875 resultados para texture segmentation
Resumo:
This paper deals with the evolution of microstructure and texture during hot rolling of hafnium containing NiTi based shape memory alloy Ni49.4Ti38.6Hf12. The formation of the R-phase has been associated with the precipitation of (Ti,Hf)(2)Ni phase. The crystallographic texture of the parent phase B2 as well as the product phases R and B19' have been determined. It has been found that the variant selection during the B2 -> R phase transformation is quite strong compared to the case of the B2 -> B19' transformation. During deformation, the texture of the austenite phase evolves with strong Goss and Bs components. After transformation to martensitic structure, it gives rise to a 011]parallel to RD fiber. Microstructure and texture studies reveal the occurrence of partial dynamic recrystallization during hot rolling. Large strain heterogeneities that occur surrounding (Ti,Hf)(2)Ni precipitates are relieved through extended dynamic recovery instead of particle stimulated nucleation.
Resumo:
The bio-corrosion response of ultrafine-grained commercially pure titanium processed by different routes of equal-channel angular pressing has been studied in simulated body fluid. The results indicate that the samples processed through route B-c that involved rotation of the workpiece by 90 deg in the same sense between each pass exhibited higher corrosion resistance compared to the ones processed by other routes of equal-channel angular pressing, as well as the coarse-grained sample. For a similar grain size, the higher corrosion resistance of the samples exhibiting off-basal texture compared to shear texture indicates the major role of texture in corrosion behavior. It is postulated that an optimum combination of microstructure and crystallographic texture can lead to high strength and excellent corrosion resistance.
Resumo:
Evolution of texture and concomitant grain refinement during Equal Channel Angular Pressing (ECAP) of Ti - 13Nb - 13Zr alloy has been presented. Sub-micron sized equiaxed grains with narrow grain size distribution could be achieved after eight pass at 873 K. A characteristic ECAP texture evolved in alpha phase till four passes while the evolution of characteristic ECAP texture in the beta phase could be observed only beyond the fourth pass. On increasing the deformation up to eight passes, the texture in alpha phase weakens while the beta phase shows an ideal ECAP texture. A weaker texture, low dislocation density and high crystallite size values in alpha phase suggest the occurrence of dynamic recrystallization. The absence of texture evolution in beta phase till four passes can be attributed to local lattice rotations. The characteristic ECAP texture in the eight pass deformed sample is attributed to delayed dynamic recrystallization in the beta phase. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we report a breakthrough result on the difficult task of segmentation and recognition of coloured text from the word image dataset of ICDAR robust reading competition challenge 2: reading text in scene images. We split the word image into individual colour, gray and lightness planes and enhance the contrast of each of these planes independently by a power-law transform. The discrimination factor of each plane is computed as the maximum between-class variance used in Otsu thresholding. The plane that has maximum discrimination factor is selected for segmentation. The trial version of Omnipage OCR is then used on the binarized words for recognition. Our recognition results on ICDAR 2011 and ICDAR 2003 word datasets are compared with those reported in the literature. As baseline, the images binarized by simple global and local thresholding techniques were also recognized. The word recognition rate obtained by our non-linear enhancement and selection of plance method is 72.8% and 66.2% for ICDAR 2011 and 2003 word datasets, respectively. We have created ground-truth for each image at the pixel level to benchmark these datasets using a toolkit developed by us. The recognition rate of benchmarked images is 86.7% and 83.9% for ICDAR 2011 and 2003 datasets, respectively.
Resumo:
In the present study, high strength bulk ultrafine-grained titanium alloy Ti-6Al-4V bars were successfully processed using multi-pass warm rolling. Ti-6Al-4V bars of 12 mm diameter and several metres long were processed by multi-pass warm rolling at 650 degrees C, 700 degrees C and 750 degrees C. The highest achieved mechanical properties for Ti-6Al-4V in as rolled condition were yield strength 1191 MPa, ultimate tensile strength of 1299 MPa having an elongation of 10% when the rolling temperature was 650 degrees C. The concurrent evolution of microstructure and texture has been studied using optical microscopy, electron back scattered diffraction and x-ray diffraction. The significant improvement in mechanical properties has been attributed to the ultrafine-grained microstructure as well as the morphology of alpha and beta phases in the warm rolled specimens. The warm rolling of Ti-6Al-4V leads to formation of < 10 (1) over bar0 >alpha//RD fibre texture. This study shows that multi-pass warm rolling has potential to eliminate the costly and time consuming heat treatment steps for small diameter bar products, as the solution treated and aged (STA) properties are achievable in the as rolled condition itself. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (similar to 0.1wt.%) for various titanium alloys e.g. Ti-6Al-4V. The deformation behaviour of such an alloy Ti-6Al-4V-0.1B is investigated in the (+) phase field and compared against that of the base alloy Ti-6Al-4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of lamellae in near and softening via globularization of lamella in near phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti-6Al-4V-0.1B alloy. The compression texture of both the alloys carry signature of pure phase defamation at lower temperature and phase transformation near the transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti-6Al-4V-0.1B alloy at comparatively lower temperature.
Resumo:
The recrystallization behaviour of cold-rolled nanocrystalline (nc) nickel has been studied at temperatures between 573 and 1273 K using bulk texture measurements and electron back-scattered diffraction. The texture in nc nickel is different from that of its microcrystalline counterpart, consisting of a strong Goss (G) and rotated Goss (RG) components at 773 K instead of the typical cube component. The texture evolution in nc Ni has been attributed to the prior deformation textures and nucleation advantage of G and RG grains.
Resumo:
The micromechanical aspects of rolling texture development in Ni-40 wt.% Co alloy during very large reductions (up to epsilon(t) = 3.9) have been studied. The alloy showed a typical Cu-type texture up to a true strain of epsilon(t) = 3; however, the texture undergoes an abrupt transition to Bs-type on further rolling to epsilon(t) approximate to 4. (The Bs-type texture, here, comprises almost equal fractions of Goss and Bs components.) Microstructural observations, at early stages, show that deformation is accommodated entirely by slip, and very little presence of deformation twinning is observed to explain the texture transition. However, at much higher reduction levels, micrographs show a high fraction of Cu-type shear bands. These bands are predominantly found in Cu-oriented grains and the crystallites inside the shear bands are preferentially oriented towards Goss, which could explain the final texture evolution. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fe0.05Co0.95Sb2.875Te0.125, a double-element-substituted skutterudite, was prepared by induction melting, annealing, and hot pressing (HP). The hot-pressed sample was subjected to high-pressure torsion (HPT) with 4 GPa pressure at 673 K. X-ray diffraction was performed before and after HPT processing of the sample; the skutterudite phase was observed as a main phase, but an additional impurity phase (CoSb2) was observed in the HPT-processed sample. Surface morphology was determined by high-resolution scanning electron microscopy. In the HP sample, coarse grains with sizes in the range of approximately 100 nm to 300 nm were obtained. They changed to fine grains with a reduction in grain size to 75 nm to 125 nm after HPT due to severe plastic deformation. Crystallographic texture, as measured by x-ray diffraction, indicated strengthening of (112), (102) poles and weakening of the (123) pole of the HPT-processed sample. Raman-active vibrational modes showed a peak position shift towards the lower energy side, indicating softening of the modes after HPT. The distortion of the rectangular Sb-Sb rings leads to broadening of Sb-Sb vibrational modes due to local strain fluctuation. In the HPT process, a significant effect on the shorter Sb-Sb bond was observed as compared with the longer Sb-Sb bond.
Resumo:
Crystallographic texture is perceived to play an important role in controlling material properties. However, the influence of texture in modulating the properties of biomedical materials has not been well investigated. In this work, commercially pure titanium (cp-Ti) was processed through six different routes to generate a variety of textures. The effect of texture on mechanical properties, corrosion behavior, cell proliferation and osteogenesis was characterized for potential use in orthopedic applications. The presence of closely packed, low-energy crystallographic planes at the material surface was influenced by the volume fraction of the components in the overall texture, thereby influencing surface energy and corrosion behavior. Texture modulated osteoblast proliferation through variations in surface water wettability. It also affected mineralization by possibly influencing the coherency between the substrate and calcium phosphate deposits. This study demonstrates that crystallographic texture can be an important tool in improving the properties of biomaterials to achieve the enhanced performance of biomedical implants.
Resumo:
The present study investigates the critical role of deformation twinning and Bs-type shear bands in the evolution of deformation texture in a low stacking fault energy Ni-60Co alloy up to very large rolling strain (epsilon(t) approximate to 4). The alloy develops a strong brass-type rolling texture, and its formation is initiated at the early stages of deformation. Extensive twinning is observed at the intermediate stages of deformation, which causes significant texture reorientation towards alpha-fiber. A pseudo-in-situ electron back-scattered diffraction technique adopted to capture orientation changes within individual grains during the early stages suggests that twinning should be subsequently aided by crystallographic slip to attain alpha-fiber (< 1 1 0 >parallel to ND) orientations. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of < 1 1 1 >parallel to ND components. The volume fraction of shear bands is significant at higher strains, and crystallites within the bands preferentially show < 1 1 0 >parallel to ND components. The absence of the Cu {1 1 2}< 1 1 1 > component in the initial texture, and subsequently during rolling, indicates that, for the evolution of a brass-type texture, the presence of the Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ultra high molecular weight polyethylene (PE) is a structural polymer widely used in biomedical implants. The mechanical properties of PE can be improved either by controlled crystalline orientation (texture) or by the addition of reinforcing agents. However, the combinatorial effect has not received much attention. The objective of this study was to characterize the structure and mechanical properties of PE composites incorporating multiwall carbon nanotubes (MWCNT) and reduced graphene oxide (RGO) subjected to hot rolling. The wide angle X-ray diffraction studies revealed that mechanical deformation resulted in a mixture of orthorhombic and monoclinic crystals. Furthermore, the presence of nanoparticles resulted in lower crystallinity in PE with smaller crystallite size, more so in RGO than in MWCNT composites. Rolling strengthened the texture of both orthorhombic and the monoclinic phases in PE. Presence of RGO weakened the texture of both phases of PE after rolling whereas MWCNT only mildly weakened the texture. This resulted in a reduction in the elastic modulus of RGO composites whereas moduli of neat polymer and the MWCNT composite increased after rolling. This study provides new insight into the role of nanoparticles in texture evolution during polymer processing with implications for processing of structural polymer composites.
Resumo:
Magnesium and its alloys are an emerging class of resorbable materials for orthopedic and cardiovascular applications. The typical strategy underlying the development of these materials involves the control of material processing routes and the addition of alloying elements. Crystallographic texture is known to control bulk mechanical as well as surface properties. However, its role in determining the properties of magnesium for implant materials has not been well studied. In this work, an extruded rod of pure magnesium was cut in multiple directions to generate samples with different textures. It was found that texture significantly affected the strength and ductility of magnesium. Corrosion rates in Hank's solution decreased with the increased presence of low energy basal planes at the surface. In vitro cell studies revealed that changes in texture did not induce cytotoxicity. Thus, the control of texture in magnesium based implants could be used to tailor the mechanical properties and the resorption rates without compromising cytocompatibility. This study elucidates the importance of texture in the use of magnesium as a resorbable biomaterial.
Resumo:
In this paper the effects of crystallographic texture and microstructure on the elastic modulus of different grades of steel have been collected from the available literature and put in one place. It is expected that this will help researchers in their understanding of both the fundamental and the practical aspects of the different grades of steel used for various purposes.
Resumo:
Shape and texture are both important properties of visual objects, but texture is relatively less understood. Here, we characterized neuronal responses to discrete textures in monkey inferotemporal (IT) cortex and asked whether they can explain classic findings in human texture perception. We focused on three classic findings on texture discrimination: 1) it can be easy or hard depending on the constituent elements; 2) it can have asymmetries, and 3) it is reduced for textures with randomly oriented elements. We recorded neuronal activity from monkey inferotemporal (IT) cortex and measured texture perception in humans for a variety of textures. Our main findings are as follows: 1) IT neurons show congruent selectivity for textures across array size; 2) textures that were easy for humans to discriminate also elicited distinct patterns of neuronal activity in monkey IT; 3) texture pairs with asymmetries in humans also exhibited asymmetric variation in firing rate across monkey IT; and 4) neuronal responses to randomly oriented textures were explained by an average of responses to homogeneous textures, which rendered them less discriminable. The reduction in discriminability of monkey IT neurons predicted the reduced discriminability in humans during texture discrimination. Taken together, our results suggest that texture perception in humans is likely based on neuronal representations similar to those in monkey IT.