971 resultados para temperature coefficient
Resumo:
The effect of the temperature on the compressive stress–strain behavior of Al/SiC nanoscale multilayers was studied by means of micropillar compression tests at 23 °C and 100 °C. The multilayers (composed of alternating layers of 60 nm in thickness of nanocrystalline Al and amorphous SiC) showed a very large hardening rate at 23 °C, which led to a flow stress of 3.1 ± 0.2 GPa at 8% strain. However, the flow stress (and the hardening rate) was reduced by 50% at 100 °C. Plastic deformation of the Al layers was the dominant deformation mechanism at both temperatures, but the Al layers were extruded out of the micropillar at 100 °C, while Al plastic flow was constrained by the SiC elastic layers at 23 °C. Finite element simulations of the micropillar compression test indicated the role played by different factors (flow stress of Al, interface strength and friction coefficient) on the mechanical behavior and were able to rationalize the differences in the stress–strain curves between 23 °C and 100 °C.
Resumo:
The technical improvement and new applications of Infrared Thermography (IRT) with healthy subjects should be accompanied by results about the reproducibility of IRT measurements in different popula-tion groups. In addition, there is a remarkable necessity of a larger supply on software to analyze IRT images of human beings. Therefore, the objectives of this study were: firstly, to investigate the reproducibility of skin temperature (Tsk) on overweight and obese subjects using IRT in different Regions of Interest (ROI), moments and side-to-side differences (?T); and secondly, to check the reliability of a new software called Termotracker®, specialized on the analysis of IRT images of human beings. Methods: 22 overweight and obese males (11) and females (11) (age: 41,51±7,76 years; height: 1,65±0,09 m; weight: 82,41±11,81 Kg; BMI: 30,17±2,58 kg/m²) were assessed in two consecutive thermograms (5 seconds in-between) by the same observer, using an infrared camera (FLIR T335, Sweden) to get 4 IRT images from the whole body. 11 ROI were selected using Termotracker® to analyze its reproducibility and reliability through Intra-class Correlation Coefficient (ICC) and Coefficient of Variation (CV) values. Results: The reproducibility of the side-to-side differences (?T) between two consecutive thermograms was very high in all ROIs (Mean ICC = 0,989), and excellent between two computers (Mean ICC = 0,998). The re-liability of the software was very high in all the ROIs (Mean ICC = 0,999). Intraexaminer reliability analysing the same subjects in two consecutive thermograms was also very high (Mean ICC = 0,997). CV values of the different ROIs were around 2%. Conclusions: Skin temperature on overweight subjects had an excellent reproducibility for consecutive ther-mograms. The reproducibility of thermal asymmetries (?T) was also good but it had the influence of several factors that should be further investigated. Termotracker® reached excellent reliability results and it is a relia-ble and objective software to analyse IRT images of humans beings.
Resumo:
In Cruise 13 of R/V Akademik Sergey Vavilov in the Pechora Sea, six heat flow varied from 50 to 75 mW/m**2. Deep heat flow in the Pechora Sea was calculated equal to 45 mW/m**2, which is confirmed by results of geological and geophysical studies and corresponds to Middle Baikal age of the basement. A model of structure of the lithosphere in the Pechora Sea is suggested. Total thickness of the lithosphere in the basin (190 km) determined from geothermal data agrees well with that in transition zones from the continent to the ocean. According to estimates of deep heat flow in the region obtained, thickness of the mantle (160 km), of the basaltic (15 km), and of the granitic (15 km) layers of the lithosphere were also evaluated. Temperature values at boundaries of the sedimentary layers were calculated over a geological and geophysical profile crossing the Pechora Sea basin. Temperatures obtained agree with the temperature interval of hydrocarbon generation and correspond to Permian-Triassic sedimentary sequences, which are the most productive ones in the Pechora Sea region from the point of view of oil and gas potential.
Resumo:
A comparison is made between Arrhenius and transition-state analyses of the temperature dependence of rate constants reported in four published biosensor studies. Although the Eyring transition-state theory seemingly affords a more definitive solution to the problem of characterizing the activation energetics, the analysis is equivocal because of inherent assumptions about reaction mechanism and the magnitude of the transmission coefficient. In view of those uncertainties it is suggested that a preferable course of action entails reversion to the empirical Arrhenius analysis with regard to the energy of activation and a preexponential factor. The former is essentially equivalent to the enthalpy of activation, whereas the magnitude of the latter indicates directly the extent of disparity between the frequency of product formation and the universal frequency factor (temperature multiplied by the ratio of the Boltzmann and Planck constants) and hence the likelihood of a more complicated kinetic mechanism than that encompassed by the Eyring transition-state theory. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A heat transfer coefficient gauge has been built, obeying particular rules in order to ensure the relevance and accuracy of the collected information. The gauge body is made out of the same materials as the die casting die (H13). It is equipped with six thermocouples located at different depths in the body and with a sapphire light pipe. The light pipe is linked to an optic fibre, which is connected to a monochromatic pyrometer. Thermocouples and pyrometer measurements are recorded with a data logger. A high pressure die casting die was instrumented with one such gauge. A set of 150 castings was done and the data recorded. During the casting, some process parameters have been modified such as piston velocity, intensification pressure, delay before switch to the intensification stage, temperature of the alloy, etc.... The data was treated with an inverse method in order to transform temperature measurements into heat flux density and heat transfer coefficient plots. The piston velocity and the initial temperature of the die seem to be the process parameters that have the greatest influence on the heat transfer. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The metallic state of high-temperature copper-oxide superconductors, characterized by unusual and distinct temperature dependences in the transport properties(1-4), is markedly different from that of textbook metals. Despite intense theoretical efforts(5-11), our limited understanding is impaired by our inability to determine experimentally the temperature and momentum dependence of the transport scattering rate. Here, we use a powerful magnetotransport probe to show that the resistivity and the Hall coefficient in highly doped Tl2Ba2CuO6+delta originate from two distinct inelastic scattering channels. One channel is due to conventional electron electron scattering; the other is highly anisotropic, has the same symmetry as the superconducting gap and a magnitude that grows approximately linearly with temperature. The observed form and anisotropy place tight constraints on theories of the metallic state. Moreover, in heavily doped non-superconducting La2-xSrxCuO4, this anisotropic scattering term is absent(12), suggesting an intimate connection between the origin of this scattering and superconductivity itself.
Resumo:
Measurements were carried out to determine local coefficients of heat transfer in short lengths of horizontal pipe, and in the region of an discontinuity in pipe diameter. Laminar, transitional and turbulent flow regimes were investigated, and mixtures of propylene glycol and water were used in the experiments to give a range of viscous fluids. Theoretical and empirical analyses were implemented to find how the fundamental mechanism of forced convection was modified by the secondary effects of free convection, temperature dependent viscosity, and viscous dissipation. From experiments with the short tube it was possible to determine simple empirical relationships describing the axial distribution of the local 1usselt number and its dependence on the Reynolds and Prandtl numbers. Small corrections were made to account for the secondary effects mentioned above. Two different entrance configurations were investigated to demonstrate how conditions upstream could influence the heat transfer coefficients measured downstream In experiments with a sudden contraction in pipe diameter the distribution of local 1u3se1t number depended on the Prandtl number of the fluid in a complicated way. Graphical data is presented describing this dependence for a range of fluids indicating how the local Nusselt number varied with the diameter-ratio. Ratios up to 3.34:1 were considered. With a sudden divergence in pipe diameter, it was possible to derive the axial distribution of the local Nusse1t number for a range of Reynolds and Prandtl numbers in a similar way to the convergence experiments. Difficulty was encountered in explaining some of the measurements obtained at low Reynolds numbers, and flow visualization techniques wore used to determine the complex flow patterns which could lead to the anomalous results mentioned. Tests were carried out with divergences up to 1:3.34 to find the way in which the local Nusselt number varied with the diameter ratio, and a few experiments were carried out with very large ratios up .to 14.4. A limited amount of theoretical analysis of the 'divergence' system was carried out to substantiate certain explanations of the heat transfer mechanisms postulated.
Resumo:
Experiments on drying of moist particles by ambient air were carried out to measure the mass transfer coefficient in a bubbling fluidized bed. Fine glass beads of mean diameter 125?µm were used as the bed material. Throughout the drying process, the dynamic material distribution was recorded by electrical capacitance tomography (ECT) and the exit air condition was recorded by a temperature/humidity probe. The ECT data were used to obtain qualitative and quantitative information on the bubble characteristics. The exit air moisture content was used to determine the water content in the bed. The measured overall mass transfer coefficient was in the range of 0.0145–0.021?m/s. A simple model based on the available correlations for bubble-cloud and cloud-dense interchange (two-region model) was used to predict the overall mass transfer coefficient. Comparison between the measured and predicted mass transfer coefficient have shown reasonable agreement. The results were also used to determine the relative importance of the two transfer regions.
Resumo:
We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70°C to 80°C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.
Resumo:
It is well accepted that the climate impact of large explosive volcanic eruptions results from reduction of solar radiation following atmospheric conversion of magmatic SO emissions into HSO aerosols. Thus, understanding the fate of SO in the eruption plume is crucial for better assessing volcanic forcing of climate. Here we focus on the potential of tephra to interact with and remove SO gas from the eruptive plume. Scavenging of SO by tephra is generally assumed to be driven by in-plume, low-temperature reactions between HSO condensates and tephra particles. However, the importance of SO gas-tephra interaction above the dew point temperature of HSO (190-200°C) has never been constrained. Here we report the results of an experimental study where silicate glasses with representative volcanic compositions were exposed to SO in the temperature range 25-800°C. We show that above 600°C, the uptake of SO on glass exhibits optimal efficiency and emplaces surficial CaSO deposits. This reaction is sustained via Ca diffusion from the bulk to the surface of the glass particles. At 800°C, the diffusion coefficient for Ca in the glasses was in the range 10-10cms. We suggest that high temperature SO scavenging by glass-rich tephra proceeds by the same Ca diffusion-driven mechanism. Using a simple mathematical model, we estimated SO scavenging efficiencies at 800°C varying from
Resumo:
The Bragg wavelength of a PMMA based fiber grating is determined by the effective core index and the grating pitch, which, in temperature sensing, depend on the thermo-optic and thermal expansion coefficients of PMMA. These two coefficients are a function of surrounding temperature and humidity. Amorphous polymers including PMMA exhibit a certain degree of anisotropic thermal expansion. The anisotropic nature of expansion mainly depends on the polymer processing history. The expansion coefficient is believed to be lower in the direction of the molecular orientation than in the direction perpendicular to the draw direction. Such anisotropic behavior of polymers can be expected in drawn PMMA based optical fiber, and will lead to a reduced thermal expansion coefficient and larger temperature sensitivity than would be the case were the fiber to be isotropic. Extensive work has been carried out to identify these factors. The temperature responses of gratings have been measured at different relative humidity. Gratings fabricated on annealed and non-annealed PMMA optical fibers are used to compare the sensitivity performance as annealing is considered to be able to mitigate the anisotropic effect in PMMA optical fiber. Furthermore an experiment has been designed to eliminate the thermal expansion contribution to the grating wavelength change, leading to increased temperature sensitivity and improved response linearity. © 2014 Copyright SPIE.
Resumo:
We describe the characterization of the temperature and strain responses of fiber Bragg grating sensors by use of an interferometric interrogation technique to provide an absolute measurement of the grating wavelength. The fiber Bragg grating temperature response was found to be nonlinear over the temperature range -70 °C to 80 °C. The nonlinearity was observed to be a quadratic function of temperature, arising from the linear dependence on temperature of the thermo-optic coefficient of silica glass over this range, and is in good agreement with a theoretical model.
Resumo:
In poly(methyl methacrylate) (PMMA)-based optical fiber gratings (POFBGs), the temperature response is determined by thermal expansion and the thermo-optic effect of the fiber. Because thermal expansion introduces a positive change and the thermo-optic effect introduces a negative change in the Bragg wavelength of the POFBG, they cancel out each other to some extent, leading to reduced and varying temperature sensitivity. By pre-straining a POFBG, the contribution of thermal expansion can be removed, and, consequently, the temperature sensitivity of POFBG can be greatly enhanced. Theoretical analysis also indicates a reduced thermo-optic coefficient of POFBG due to restrained linear expansion that matches experimental results.
Resumo:
Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol solution at ambient pressure. The porous media pore structure increases the methanol crossover resistance. As temperature increased to 60°C, the device increases to 2.14 mWcm-2.