798 resultados para technology tools for teaching
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
Résumé Le but final de ce projet est d'utiliser des cellules T ou des cellules souches mésenchymateuses modifiées génétiquement afin de surexprimer localement les deux chémokines CXCL13 et CCL2 ensemble ou chacune séparément à l'intérieur d'une tumeur solide. CXCL13 est supposé induire des structures lymphoïdes ectopiques. Un niveau élevé de CCL2 est présumé initier une inflammation aiguë. La combinaison des deux effets amène à un nouveau modèle d'étude des mécanismes régulateur de la tolérance périphérique et de l'immunité tumorale. Les connaissances acquises grâce à ce modèle pourraient permettre le développement ou l'amélioration des thérapies immunes du cancer. Le but premier de ce travail a été l'établissement d'un modèle génétique de la souris permettant d'exprimer spécifiquement dans la tumeur les deux chémokines d'intérêt à des niveaux élevés. Pour accomplir cette tâche, qui est en fait une thérapie génétique de tumeurs solides, deux types de cellules porteuses potentielles ont été évaluées. Des cellules CD8+ T et des cellules mésenchymateuses de la moelle osseuse transférées dans des receveurs portant une tumeur. Si on pouvait répondre aux besoins de la thérapie génétique, indépendamment de la thérapie immune envisagée, on posséderait là un outil précieux pour bien d'autres approches thérapeutiques. Plusieurs lignées de souris transgéniques ont été générées comme source de cellules CD8+ T modifiées afin d'exprimer les chémokines d'intérêt. Dans une approche doublement transgénique les propriétés de deux promoteurs spécifiques de cellules T ont été combinées en utilisant la technologie Cre-loxP. Le promoteur de granzyme B confère une dépendance d'activation et le promoteur distal de lck assure une forte expression constitutive dès que les cellules CD8+ T ont été activées. Les transgènes construits ont montré une bonne performance in vivo et des souris qui expriment CCL2 dans des cellules CD8+ T activées ont été obtenues. Ces cellules peuvent maintenant être utilisées avec différents protocoles pour transférer des cellules T cytotoxiques (CTL) dans des receveurs porteur d'une tumeur, permettant ainsi d'évaluer leur capacité en tant que porteuse de chémokine d'infiltrer la tumeur. L'établissement de souris transgéniques, qui expriment pareillement CXCL13 est prévu dans un avenir proche. L'évaluation de cellules mésenchymateuses de la moelle osseuse a démontré que ces cellules se greffent efficacement dans le stroma tumoral suite à la co-injection avec des cellules tumorales. Cela représente un outil précieux pour la recherche, vu qu'il permet d'introduire des cellules manipulées dans un modèle tumoral. Les résultats confirment partiellement d'autres résultats rapportés dans un modèle amélioré. Cependant, l'efficacité et la spécificité suggérées de la migration systémique de cellules mésenchymateuses de la moelle osseuse dans une tumeur n'ont pas été observées dans notre modèle, ce qui indique, que ces cellules ne se prêtent pas à une utilisation thérapeutique. Un autre résultat majeur de ce travail est l'établissement de cultures de cellules mésenchymateuses de la moelle osseuse in vitro conditionnées par des tumeurs, ce qui a permis à ces cellules de s'étendre plus rapidement en gardant leur capacité de migration et de greffe. Cela offre un autre outil précieux, vu que la culture in vitro est un pas nécessaire pour une manipulation thérapeutique. Abstract The ultimate aim of the presented project is to use genetically modified T cells or mesenchymal stem cells to locally overexpress the two chemokines CXCL13 and CCL2 together or each one alone inside a solid tumor. CXCL13 is supposed to induce ectopic lymphoid structures and a high level of CCL2 is intended to trigger acute inflamation. The combination of these two effects represents a new model for studying mechanisms that regulate peripheral tolerance and tumor immunity. Gained insights may help developing or improving immunotherapy of cancer. The primary goal of the executed work was the establishment of a genetic mouse model that allows tumor-specific expression of high levels of the two chemokines of interest. For accomplishing this task, which represents gene therapy of solid tumors, two types of potentially useful carrier cells were evaluated. CD8+ T cells and mesenchymal bone marrow cells to be used in adoptive cell transfers into tumor-bearing mice. Irrespectively of the envisaged immunotherapy, satisfaction of so far unmet needs of gene therapy would be a highly valuable tool that may be employed by many other therapeutic approaches, too. Several transgenic mouse lines were generated as a source of CD8+ T cells modified to express the chemokines of interest. In a double transgenic approach the properties of two T cell-specific promoters were combined using Cre-loxP technology. The granzyme B promoter confers activation-dependency and the lck distal promoter assures strong constitutive expression once the CD8+ T cell has been activated. The constructed transgenes showed a good performance in vivo and mice expressing CCL2 in activated CD8+ T cells were obtained. These cells can now be used with different protocols for adoptively transferring cytotoxic T cells (CTL) into tumor-bearing recipients, thus allowing to study their capacity as tumor-infiltrating chemokine carrier. The establishment of transgenic mice likewisely expressing CXCL13 is expected in the near future. In addition, T cells from generated single transgenic mice that have high expression of an EGFP reporter in both CD4+ and CD8+ cells can be easily traced in vivo when setting up adoptive transfer conditions. The evaluation of mesenchymal bone marrow cells demonstrated that these cells can efficiently engraft into tumor stroma upon local coinjection with tumor cells. This represents a valuable tool for research purposes as it allows to introduce manipulated stromal cells into a tumor model. Therefore, the established engraftment model is suited for studying the envisaged immunotherapy. These results confirm to some extend previously reported results in an improved model, however, the suggested systemic tumor homing efficiency and specificity of mesenchymal bone marrow cells was not observed in our model indicating that these cells may not be suited for therapeutic use. Another major result of the presented work is the establishment oftumor-conditioned in vitro culture of mesenchymal bone marrow cells, which allowed to more rapidly expand these cells while maintaining their tumor homing and engrafting capacities. This offers another valuable tool as in vitro culture is a necessary step for therapeutic manipulations.
Resumo:
In This work we present a Web-based tool developed with the aim of reinforcing teaching and learning of introductory programming courses. This tool provides support for teaching and learning. From the teacher's perspective the system introduces important gains with respect to the classical teaching methodology. It reinforces lecture and laboratory sessions, makes it possible to give personalized attention to the student, assesses the degree of participation of the students and most importantly, performs a continuous assessment of the student's progress. From the student's perspective it provides a learning framework, consisting in a help environment and a correction environment, which facilitates their personal work. With this tool students are more motivated to do programming
Resumo:
Tissue microarray technology was used to establish immunohistochemistry protocols and to determine the specificity of new antisera against various Chlamydia-like bacteria for future use on formalin-fixed and paraffin-embedded tissues. The antisera exhibited strong reactivity against autologous antigen and closely related heterologous antigen, but no cross-reactivity with distantly related species.
Resumo:
Aleppo pine (Pinus halepensis Mill.) is a relevant conifer species for studying adaptive responses to drought and fire regimes in the Mediterranean region. In this study, we performed Illumina next-generation sequencing of two phenotypically divergent Aleppo pine accessions with the aims of (i) characterizing the transcriptome through Illumina RNA-Seq on trees phenotypically divergent for adaptive traits linked to fire adaptation and drought, (ii) performing a functional annotation of the assembled transcriptome, (iii) identifying genes with accelerated evolutionary rates, (iv) studying the expression levels of the annotated genes and (v) developing gene-based markers for population genomic and association genetic studies. The assembled transcriptome consisted of 48,629 contigs and covered about 54.6 Mbp. The comparison of Aleppo pine transcripts to Picea sitchensis protein-coding sequences resulted in the detection of 34,014 SNPs across species, with a Ka /Ks average value of 0.216, suggesting that the majority of the assembled genes are under negative selection. Several genes were differentially expressed across the two pine accessions with contrasted phenotypes, including a glutathione-s-transferase, a cellulose synthase and a cobra-like protein. A large number of new markers (3334 amplifiable SSRs and 28,236 SNPs) have been identified which should facilitate future population genomics and association genetics in this species. A 384-SNP Oligo Pool Assay for genotyping with the Illumina VeraCode technology has been designed which showed an high overall SNP conversion rate (76.6%). Our results showed that Illumina next-generation sequencing is a valuable technology to obtain an extensive overview on whole transcriptomes of nonmodel species with large genomes.
Resumo:
One of the major hurdles of isolating stable, inducible or constitutive high-level producer cell lines is the time-consuming selection, analysis and characterization of the numerous clones required to identify one with the desired characteristics. Various boundary elements, matrix attachment regions, and locus control regions were screened for for their ability to augment the expression of heterologous genes in CHO and other cells. The 5'-matrix-attachment region (MAR) of the chicken lysozyme gene was found to significantly increase stable gene expression, in culture dishes and in bioreactors. These MAR elements can be easily combined with various existing expression systems, as they can be added in trans (i.e. on a separate plasmid) in co-transfections with previously constructed expression vectors. Using cell population analysis, we found that the use of the MAR increases the proportion of high-producing CHO cell clones, thus reducing the number of cell lines that need to be screened while increasing maximal productivity. Random cDNA cloning and sequencing indicated that over 12% of the ESTs correspond to the transgene. Thus, productivity is no longer limited by transcriptional events in such MAR-containing cell lines. The identification of small and more convenient active MAR portions will also be summarized. Finally, we will show examples of how MAR elements can be combined with short term expression to increase the simultaneous synthesis of many proteins in parallel by CHO cells. Overall, we conclude that the MAR sequence is a versatile tool to increase protein expression in short and long term production processes.
Resumo:
This project focuses on studying and testing the benefits of the NX Remote Desktop technology in administrative use for Finnish Meteorological Institutes existing Linux Terminal Service Project environment. This was done due to the criticality of the system caused by growing number of users as the Linux Terminal Service Project system expands. Although many of the supporting tasks can be done via Secure Shell connection, testing graphical programs or desktop behaviour in such a way is impossible. At first basic technologies behind the NX Remote Desktop were studied, and after that started the testing of two possible programs, FreeNX and NoMachine NX server. Testing the functionality and bandwidth demands were first done in a closed local area network, and results were studied. The better candidate was then installed in a virtual server simulating actual Linux Terminal Service Project server at Finnish Meteorological Institute and connection from Internet was tested to see was there any problems with firewalls and security policies. The results are reported in this study. Studying and testing the two different candidates of NX Remote Desktop showed, that NoMachine NX Server provides better customer support and documentation. Security aspects of the Finnish Meteorological Institute had also to be considered, and since updates along with the new developing tools are announced in next version of the program, this version was the choice. Studies also show that even NoMachine promises a swift connection over an average of 20Kbit/s bandwidth, at least double of that is needed. This project gives an overview of available remote desktop products along their benefits. NX Remote Desktop technology is studied, and installation instructions are included. Testing is done in both, closed and the actual environment and problems and suggestions are studied and analyzed. The installation to the actual LTSP server is not yet made, but a virtual server is put up in the same place in the view of network topology. This ensures, that if the administrators are satisfied with the system, installation and setting up the system will go as described in this report.
Resumo:
In this work we discuss some ideas and opinions related with teaching Metaheuristics in Business Schools. The main purpose of the work is to initiate a discussion and collaboration about this topic,with the final objective to improve the teaching and publicity of the area. The main topics to be discussed are the environment and focus of this teaching. We also present a SWOT analysis which lead us to the conclusion that the area of Metaheuristics only can win with the presentation and discussion of metaheuristics and related topics in Business Schools, since it consists in a excellent Decision Support tools for future potential users.
Resumo:
This work describes the characteristics of a representative set of seven different virtual laboratories (VLs) aimed for science teaching in secondary school. For this purpose, a 27-item evaluation model that facilitates the characterization of the VLs was prepared. The model takes into account the gaming features, the overall usability, and also the potential to induce scientific literacy. Five of the seven VLs were then tested with two larger and highly heterogenic groups of students, and in two different contexts – biotechnology and physics, respectively. It is described how the VLs were received by the students, taking into account both their motivation and their self-reported learning outcome. In some cases, students’ approach to work with the VLs was recorded digitally, and analyzed qualitatively. In general, the students enjoyed the VL activities, and claimed that they learned from them. Yet, more investigation is required to address the effectiveness of these tools for significant learning.
Online teaching of inflammatory skin pathology by a French-speaking international university network
Resumo:
Introduction: Developments in technology, webbased teaching and whole slide imaging have broadened the teaching horizon in anatomic pathology. Creating online learning material including many types of media like radiologic images, videos, clinical and macroscopic photographs and whole slides imaging is now accessible to almost every university. Unfortunately, a major limiting factor to maintain and update the learning material is the amount of work, time and resources needed. In this perspective, a French national university network was initiated in 2011 to build mutualised online teaching pathology modules with clinical cases and tests. This network has been extended to an international level in 2012-2014 (Quebec, Switzerland and Ivory Coast). Method: One of the first steps of the international project was to build a learning module on inflammatory skin pathology intended for interns and residents of pathology and dermatology. A pathology resident from Quebec spent 6 weeks in France and Switzerland to develop the contents and build the module on an e-learning Moodle platform (http: //moodle.sorbonne-paris-cite.fr) under the supervision of two dermatopathologists (BV, MB). The learning module contains text, interactive clinical cases, tests with feedback, whole slides images (WSI), images and clinical photographs. For that module, the virtual slides are decentralized in 2 universities (Bordeaux and Paris 7). Each university is responsible of its own slide scanning, image storage and online display with virtual slide viewers. Results: The module on inflammatory skin pathology includes more than 50 web pages with French original content, tests and clinical cases, links to over 45 WSI and more than 50 micro and clinical photographs. The whole learning module is currently being revised by four dermatopathologists and two senior pathologists. It will be accessible to interns and residents in spring 2014. The experience and knowledge gained from that work will be transferred to the next international fellowship intern whose work will be aimed at creating lung and breast pathology learning modules. Conclusion: The challenges of sustaining a project of this scope are numerous. The technical aspect of whole-slide imaging and storage needs to be developed by each university or group. The content needs to be regularly updated, completed and its use and existence needs to be promoted by the different actors in pathology. Of the great benefits of that kind of project are the international partnerships and connections that have been established between numerous Frenchspeaking universities and pathologists with the common goals of promoting education in pathology and the use of technology including whole slide imaging. * The Moodle website is hosted by PRES Sorbonne Paris Cité, and financial supports for hardware have been obtained from UNF3S (http://www.unf3s.org/) and PRES Sorbonne Paris Cité. Financial support for international fellowships has been obtained from CFQCU (http://www.cfqcu.org/).
Resumo:
This document describes some of the technological aspects of a project devoted to the creation of a factory for language resources. The project’s objectives are explained, as well as the idea to create a distributed infrastructure of web services. This document focuses on two main topics of the factory: (1) the technological approaches chosen to develop the factory, i.e. software, protocols, servers, etc. (2) and Interoperability as the main challenge is to permit different NLP tools work together in the factory. This document explains why XCES and GrAF are chosen as the main formats used for the linguistic data exchange.
Resumo:
Avui en dia les Tecnologies de la Informació i la Comunicació (TIC) s’han convertit en eines d’ús quotidià i alhora invisibles en diversos àmbits de la societat i les escoles no n’estan al marge. No cal ensenyar a fer servir eines tecnològiques, sinó que cal entendre-les com un suport. Recerques recents han demostrat que un bon ús d’aquestes potencien un bon ensenyament i aprenentatge. Al mateix temps, es potencien mètodes globalitzats a les aules que permeten construir coneixements significatius a partir de situacions i problemes. Per això, l’objectiu principal d’aquest estudi consisteix en investigar quins canvis s’observen en la motivació de l’alumnat i quins canvis succeeixen a l’aula en general quan s’usen les TIC com a suport en un mètode globalitzat anomenat la recerca del medi. Per tal de resoldre aquest problema d’investigació es recullen diverses dades d’una intervenció didàctica basada en aquest mètode que es porta a terme en dos cursos de cinquè de Primària. Tal com s’observarà, l’ús de les noves tecnologies en un mètode que permet apropar els infants a la realitat n’augmenta la motivació i promou canvis a l’aula que ajuden i faciliten la tasca del docent i alhora afavoreix un aprenentatge significatiu.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
A table showing a comparison and classification of tools (intelligent tutoring systems) for e-learning of Logic at a college level.
Resumo:
La sèrie d'informes Horizon és el resultat més tangible del Projecte Horizon del New Media Consortium, un esforç de recerca qualitativa iniciat el 2002, que identifica i descriu les tecnologies emergents amb més potencial d'impacte en l'ensenyament, l'aprenentatge, la recerca i la expressió creativa en l'àmbit educatiu global. Aquest volum, Technology Outlook: Iberoamerican Tertiary Education 2012-2017, és la segona edició del Projecte Horizon Iberoamèrica i se centra en la investigació en els països de la regió Iberoamericana (incloent-hi tota Llatinoamèrica, Espanya i Portugal) i en l'àmbit de l'educació superior. Ha estat produït pel NMC i l'eLearn Center de la Universitat Oberta de Catalunya.