795 resultados para teacher decision making
Resumo:
Establishing a function for the neuromodulator serotonin in human decision-making has proved remarkably difficult because if its complex role in reward and punishment processing. In a novel choice task where actions led concurrently and independently to the stochastic delivery of both money and pain, we studied the impact of decreased brain serotonin induced by acute dietary tryptophan depletion. Depletion selectively impaired both behavioral and neural representations of reward outcome value, and hence the effective exchange rate by which rewards and punishments were compared. This effect was computationally and anatomically distinct from a separate effect on increasing outcome-independent choice perseveration. Our results provide evidence for a surprising role for serotonin in reward processing, while illustrating its complex and multifarious effects.
Resumo:
Genetic variation at the serotonin transporter-linked polymorphic region (5-HTTLPR) is associated with altered amygdala reactivity and lack of prefrontal regulatory control. Similar regions mediate decision-making biases driven by contextual cues and ambiguity, for example the "framing effect." We hypothesized that individuals hemozygous for the short (s) allele at the 5-HTTLPR would be more susceptible to framing. Participants, selected as homozygous for either the long (la) or s allele, performed a decision-making task where they made choices between receiving an amount of money for certain and taking a gamble. A strong bias was evident toward choosing the certain option when the option was phrased in terms of gains and toward gambling when the decision was phrased in terms of losses (the frame effect). Critically, this bias was significantly greater in the ss group compared with the lala group. In simultaneously acquired functional magnetic resonance imaging data, the ss group showed greater amygdala during choices made in accord, compared with those made counter to the frame, an effect not seen in the lala group. These differences were also mirrored by differences in anterior cingulate-amygdala coupling between the genotype groups during decision making. Specifically, lala participants showed increased coupling during choices made counter to, relative to those made in accord with, the frame, with no such effect evident in ss participants. These data suggest that genetically mediated differences in prefrontal-amygdala interactions underpin interindividual differences in economic decision making.
Resumo:
Human choices are remarkably susceptible to the manner in which options are presented. This so-called "framing effect" represents a striking violation of standard economic accounts of human rationality, although its underlying neurobiology is not understood. We found that the framing effect was specifically associated with amygdala activity, suggesting a key role for an emotional system in mediating decision biases. Moreover, across individuals, orbital and medial prefrontal cortex activity predicted a reduced susceptibility to the framing effect. This finding highlights the importance of incorporating emotional processes within models of human choice and suggests how the brain may modulate the effect of these biasing influences to approximate rationality.
Planning the handling of tunnel excavation material - A process of decision making under uncertainty
Resumo:
Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.
Resumo:
Switching between two modes of operation is a common property of biological systems. In continuous-time differential equation models, this is often realised by bistability, i.e. the existence of two asymptotically stable steadystates. Several biological models are shown to exhibit delayed switching, with a pronounced transient phase, in particular for near-threshold perturbations. This study shows that this delay in switching from one mode to the other in response to a transient input is reflected in local properties of an unstable saddle point, which has a one dimensional unstable manifold with a significantly slower eigenvalue than the stable ones. Thus, the trajectories first approximatively converge to the saddle point, then linger along the saddle's unstable manifold before quickly approaching one of the stable equilibria. ©2010 IEEE.
Resumo:
© 2012 Elsevier Ltd. Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances.
Resumo:
Decision making at the front end of innovation is critical for the success of companies. This paper presents a method, called decision making based on knowledge (DeBK), which was created to analyze the decision-making process at the front end. The method evaluates the knowledge of project information and the importance of decision criteria, compiling a measure that indicates whether decisions are founded on available knowledge and what criteria are in fact being considered to delineate them. The potential contribution of DeBK is corroborated through two projects that faced decision-making issues at the front end of innovation. © 2014 RADMA and John Wiley & Sons Ltd.
Resumo:
After committing to an action, a decision-maker can change their mind to revise the action. Such changes of mind can even occur when the stream of information that led to the action is curtailed at movement onset. This is explained by the time delays in sensory processing and motor planning which lead to a component at the end of the sensory stream that can only be processed after initiation. Such post-initiation processing can explain the pattern of changes of mind by asserting an accumulation of additional evidence to a criterion level, termed change-of-mind bound. Here we test the hypothesis that physical effort associated with the movement required to change one's mind affects the level of the change-of-mind bound and the time for post-initiation deliberation. We varied the effort required to change from one choice target to another in a reaching movement by varying the geometry of the choice targets or by applying a force field between the targets. We show that there is a reduction in the frequency of change of mind when the separation of the choice targets would require a larger excursion of the hand from the initial to the opposite choice. The reduction is best explained by an increase in the evidence required for changes of mind and a reduced time period of integration after the initial decision. Thus the criteria to revise an initial choice is sensitive to energetic costs.
Resumo:
Bistable switches are frequently encountered in biological systems. Typically, a bistable switch models a binary decision where each decision corresponds to one of the two stable equilibria. Recently, we showed that the global decision-making process in bistable switches strongly depends on a particular equilibrium point of these systems, their saddle point. In particular, we showed that a saddle point with a time-scale separation between its attractive and repulsive directions can delay the decision-making process. In this paper, we study the effects of white Gaussian noise on this mechanism of delayed decision-making induced by the saddle point. Results show that the mean decision-time strongly depends on the balance between the initial distance to the separatrix and the noise strength. © IFAC.
Resumo:
Aim and objectives To examine how nurses collect and use cues from respiratory assessment to inform their decisions as they wean patients from ventilatory support. Background Prompt and accurate identification of the patient's ability to sustain reduction of ventilatory support has the potential to increase the likelihood of successful weaning. Nurses' information processing during the weaning from mechanical ventilation has not been well-described. Design A descriptive ethnographic study exploring critical care nurses' decision-making processes when weaning mechanically ventilated patients from ventilatory support in the real setting. Methods Novice and expert Scottish and Greek nurses from two tertiary intensive care units were observed in real practice of weaning mechanical ventilation and were invited to participate in reflective interviews near the end of their shift. Data were analysed thematically using concept maps based on information processing theory. Ethics approval and informed consent were obtained. Results Scottish and Greek critical care nurses acquired patient-centred objective physiological and subjective information from respiratory assessment and previous knowledge of the patient, which they clustered around seven concepts descriptive of the patient's ability to wean. Less experienced nurses required more encounters of cues to attain the concepts with certainty. Subjective criteria were intuitively derived from previous knowledge of patients' responses to changes of ventilatory support. All nurses used focusing decision-making strategies to select and group cues in order to categorise information with certainty and reduce the mental strain of the decision task. Conclusions Nurses used patient-centred information to make a judgment about the patients' ability to wean. Decision-making strategies that involve categorisation of patient-centred information can be taught in bespoke educational programmes for mechanical ventilation and weaning. Relevance to clinical practice Advanced clinical reasoning skills and accurate detection of cues in respiratory assessment by critical care nurses will ensure optimum patient management in weaning mechanical ventilation