912 resultados para surface coating
SEM-EDS and biomechanical evaluation of implants with different surface treatments: An initial study
Resumo:
Aim: Alterations in implant surfaces can affect periimplant bone formation and shorten the healing time. The goal of the present study was a comparative scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS) and biomechanical evaluation of implants subjected to different surface treatments. Materials and Methods: Four implant surfaces were analyzed in the present study: machined commercial implants (TU); porous-surfaced commercial implants blasted with Al2O3 microspheres and acid-etched (TJA); laser beam-irradiated experimental implants (Laser) and laser beam-irradiated experimental implants with hydroxyapatite coating (HA). One sample for each surface underwent pre-surgery SEM/EDS analysis. Thirty-two implants (8 for each surface treatment) were then inserted into the tibia of 4 rabbits. After 8 weeks, the animals were euthanized and the implants retrieved by reverse torque and processed for post-surgery SEM/EDS analysis. Results: HA implants presented higher removal torque values when compared to Laser, TJA and TU groups. Post-surgery SEM micrographs clearly showed bone formation on all the examined surfaces; however, in the TU group bone covered only some areas of the implant surface, while in TJA, Laser and HA groups the entire implant surfaces were overlaid by newly formed bone. EDS analysis supported the results obtained by SEM and removal torque, showing that concentration of Ca and P increased from TU to TJA, Laser and HA implants. Conclusions: Implants with surfaces modified by laser beam with or without apatite coating showed more promising results.
Resumo:
Investigation of the effectiveness of surface treatments that promote a strong bond strength of resin cements to metals can contribute significantly to the longevity of metal-ceramic restorations. This study evaluated the effect of surface treatments on the shear bond strength (SBS) of a resin cement to commercially pure titanium (CP Ti). Ninety cast CP Ti discs were divided into 3 groups (n=30), which received one of the following airborne-particle abrasion conditions: (1) 50 μm Al2O3 particles; (2) 30 μm silica-modified Al2O3 particles (Cojet Sand); (3) 110 μm silica-modified Al2O3 particles (Rocatec). For each airborne-particle abrasion condition, the following post-airborne-particle abrasion treatments were used (n=10): (1) none; (2) adhesive Adper Single Bond 2; (3) silane RelyX Ceramic Primer. RelyX ARC resin cement was bonded to CP Ti surfaces. All specimens were thermally cycled before being tested in shear mode. Failure mode was determined. The best association was Rocatec plus silane. All groups showed 100% adhesive failure. There were combinations that promote higher SBS than the protocol recommended by the manufacturer of RelyX ARC.
Resumo:
This study evaluated, by scanning electron microscope (SEM) and EDS, the effect of different strategies for silica coating (sandblasters, time and distance) of a glass-infiltrated ceramic (In-Ceram Alumina). Forty-one ceramic blocks were produced. For comparison of the three air-abrasion devices, 15 ceramic samples were divided in three groups (N.=5): Bioart, Microetcher and Ronvig (air-abrasion parameters: 20 s at a distance of 10 mm). For evaluation of the time and distance factors, ceramic samples (N.=5) were allocated in groups considering three applied times (5 s, 13 s and 20 s) and two distances (10 mm and 20 mm), using the Ronvig device. In a control sample, no surface treatment was performed. After that, the micro-morphologic analyzes of the ceramic surfaces were made using SEM. EDS analyzes were carried out to detect the % of silica on representative ceramic surface. ANOVA and Tukey tests were used to analyze the results. One-way ANOVA showed the silica deposition was different for different devices (P=0.0054). The Ronvig device promoted the highest silica coating compared to the other devices (Tukey test). Two-way ANOVA showed the distance and time factors did not affect significantly the silica deposition (application time and distance showed no statistical difference). The Ronvig device provided the most effective silica deposition on glass-infiltrated alumina ceramic surface and the studied time and distance for air-abrasion did not affect the silica coating.
Resumo:
Purpose: To evaluate the shear bond strength and bond durability between a dual-cured resin cement (RC) and a high alumina ceramic (In-Ceram Alumina), subjected to two surface treatments. Materials and Methods: Forty disc-shaped specimens (sp) (4-mm diameter, 5-mm thick) were fabricated from In-Ceram Alumina and divided into two groups (n = 20) in accordance with surface treatment: (1) sandblasting by aluminum oxide particles (50 μm Al 2O 3) (SB) and (2) silica coating (30 μm SiO x) using the CoJet system (SC). After the 40 sp were bonded to the dual-cured RC, they were stored in distilled water at 37°C for 24 hours. After this period, the sp from each group were divided into two conditions of storage (n = 10): (a) 24 h-shear bond test 24 hours after cementation; (b) Aging-thermocycling (TC) (12,000 times, 5 to 55°C) and water storage (150 days). The shear test was performed in a universal test machine (1 mm/min). Results: ANOVA and Tukey (5%) tests noted no statistically significant difference in the bond strength values between the two surface treatments (p= 0.7897). The bond strengths (MPa) for both surface treatments reduced significantly after aging (SB-24: 8.2 ± 4.6; SB-Aging: 3.7 ± 2.5; SC-24: 8.6 ± 2.2; SC-Aging: 3.5 ± 3.1). Conclusion: Surface conditioning using airborne particle abrasion with either 50 μm alumina or 30 μm silica particles exhibited similar bond strength values and decreased after long-term TC and water storage for both methods. © 2011 by The American College of Prosthodontists.
Resumo:
Urease inhibitor (UI) and nitrification inhibitor (NI) have the potential to improve N-use efficiency of applied urea and minimize N losses via gaseous emissions of ammonia (NH 3) to the atmosphere and nitrate (NO3-) leaching into surface and ground water bodies. There is a growing interest in the formulations of coating chemical fertilizers with both UI and NI. However, limited information is available on the combined use of UI and NI applied with urea fertilizer. Therefore the aim of this study was to investigate the effects of treating urea with both UI and NI to minimize NH 3 volatilization. Two experiments were set up in volatilization chambers under controlled conditions to examine this process. In the first experiment, UR was treated with the urease inhibitor NBPT [N-(n-butyl) thiophosphoric acid triamide] at a rate of 1060 mg kg -1 urea and/or with the nitrification inhibitor DCD (dicyandiamide) at rates equivalent to 5 or 10% of the urea N. A randomized experimental design with five treatments and five replicates was used: 1) UR, 2) UR + NBPT, 3) UR + DCD 10%, 4) UR + NBPT + DCD 5%, and 5) UR + NBPT + DCD 10%. The fertilizer treatments were applied to the surface of an acidic Red Latosol soil moistened to 60% of the maximum water retention and placed inside volatilization chambers. Controls chambers were added to allow for NH 3 volatilized from unfertilized soil or contained in the air that swept over the soil surface. The second experiment had an additional treatment with surface-applied DCD. The chambers were glass vessels (1.5 L) fit with air inlet and outlet tubings to allow air to pass over the soil. Ammonia volatilized was swept and carried to a flask containing a boric acid solution to trap the gas and then measured daily by titration with a standardized H 2SO 4 solution. Continuous measurements were recorded for 19 and 23 days for the first and second experiment, respectively. The soil samples were then analyzed for UR-, NH4+-, and NO3--N. Losses of NH 3 by volatilization with unamended UR ranged from 28 to 37% of the applied N, with peak of losses observed the third day after fertilization. NBPT delayed the peak of NH 3 losses due to urease inhibition and reduced NH 3 volatilization between 54 and 78% when compared with untreated UR. Up to 10 days after the fertilizer application, NH 3 losses had not been affected by DCD in the UR or the UR + NBPT treatments; thereafter, NH 3 volatilization tended to decrease, but not when DCD was present. As a consequence, the addition of DCD caused a 5-16% increase in NH 3 volatilization losses of the fertilizer N applied as UR from both the UR and the UR + NBPT treatments. Because the effectiveness of NBPT to inhibit soil urease activity was strong only in the first week, it could be concluded that DCD did not affect the action of NBPT but rather, enhanced volatilization losses by maintaining higher soil NH4+ concentration and pH for a longer time. Depending on the combination of factors influencing NH 3 volatilization, DCD could even offset the beneficial effect of NBPT in reducing NH 3 volatilization losses. © 2012 Elsevier Ltd.
Resumo:
This study evaluated the effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Disc-shaped zirconia specimens (Ø: 15mm, thickness: 1.2mm) (N=32) were submitted to one of the air-particle abrasion protocols (n=8 per group): (a) 50μm Al2O3 particles, (b) 110μm Al2O3 particles coated with silica (Rocatec Plus), (c) 30μm Al2O3 particles coated with silica (CoJet Sand) for 20s at 2.8bar pressure. Control group received no air-abrasion. All specimens were initially cyclic loaded (×20,000, 50N, 1Hz) in water at 37°C and then subjected to biaxial flexural strength testing where the conditioned surface was under tension. Zirconia surfaces were characterized and roughness was measured with 3D surface profilometer. Phase transformation from tetragonal to monoclinic was determined by Raman spectroscopy. The relative amount of transformed monoclinic zirconia (FM) and transformed zone depth (TZD) were measured using XRD. The data (MPa) were analyzed using ANOVA, Tukey's tests and Weibull modulus (m) were calculated for each group (95% CI). The biaxial flexural strength (MPa) of CoJet treated group (1266.3±158A) was not significantly different than that of Rocatec Plus group (1179±216.4A,B) but was significantly higher than the other groups (Control: 942.3±74.6C; 50μm Al2O3: 915.2±185.7B,C). Weibull modulus was higher for control (m=13.79) than those of other groups (m=4.95, m=5.64, m=9.13 for group a, b and c, respectively). Surface roughness (Ra) was the highest with 50μm Al2O3 (0.261μm) than those of other groups (0.15-0.195μm). After all air-abrasion protocols, FM increased (15.02%-19.25%) compared to control group (11.12%). TZD also showed increase after air-abrasion protocols (0.83-1.07μm) compared to control group (0.59μm). Air-abrasion protocols increased the roughness and monoclinic phase but in turn abrasion with 30μm Al2O3 particles coated with silica has increased the biaxial flexural strength of the tested zirconia. © 2013 Elsevier Ltd.
Resumo:
Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.
Resumo:
This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia. © 2013 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.
Resumo:
An Advanced Oxidation Process (AOPs) was carried out in this study with the use of immobilized ZnO and solar/UV as an energy source to degrade dairy wastewater. The semibatch reactor system consisted of metal plate of 800 × 250 mm and a glass tank. The reaction time was of 3 h for 3 L of dairy wastewater. Experiments were performed based on a surface response methodology in order to optimize the photocatalytic process. Degradation was measured in percentage terms by total organic carbon (TOC). The entry variables were ZnO coating thickness and pH, using three levels of each variable. The optimized results showed a TOC degradation of 31.7%. Optimal parameters were metal-plate coating of 100 m of ZnO and pH of 8.0. Since solar/UV is a constant and free energy source in most tropical countries, this process tends to suggest an interesting contribution in dairy wastewater treatment, especially as a pretreatment and the optimal conditions to guarantee a better efficiency of the process. © 2013 Gisella R. Lamas Samanamud et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was nondecalcified histologic analysis of titanium implants modified by laser with and without hydroxyapatite. Implants with three modified surfaces were inserted into rabbit tibias: group 1, machined surface; group 2, irradiated (laser); and group 3, irradiated and hydroxyapatite coated (biomimetic method). The mean surface roughness (Ra) scores of groups 2 and 3 were higher than that of group 1. Bone-implant contact measurements at 30 and 60 days for groups 2 and 3 were higher than for group 1. Bone area at 30 and 60 days for group 2 was higher than for groups 1 and 3. Titanium implants modified by laser with and without hydroxyapatite exhibit increased early osseointegration.
Resumo:
Purpose: To compare the shear bond strength (SBS) of two cements to two Y-TZP ceramics subjected to different surface treatments.Materials and Methods: Zirconia specimens were made from Lava (n = 36) and IPS e.max ZirCAD (n = 36), and their surfaces were treated as follows: no treatment (control), silica coating with 30-mu m silica-modified alumina (Al2O3) particles (CoJet Sand), or coating with liners Lava Ceram for Lava and Intensive ZirLiner for IPS e.max ZirCAD. Composite resin cylinders were bonded to zirconia with Panavia F or RelyX Unicem resin cements. All specimens were thermocycled (6000 cycles at 5 degrees C/55 degrees C) and subjected to SBS testing. Data were analyzed by post-hoc test Tamhane T2 and Scheffe tests (alpha = 0.05). Failure mode was analyzed by stereomicroscope and SEM.Results: With both zirconia brands, CoJet Sand showed significantly higher SBS values than control groups only when used with RelyX Unicem (p = 0.0001). Surface treatment with liners gave higher SBS than control groups with both ceramic brands and cements (p < 0.001). With both zirconia brands, the highest SBS values were obtained with the CoJet and RelyX Unicem combination (> 13.47 MPa). Panavia F cement showed significantly better results when coupled with liner surface treatment rather than with CoJet (p = 0.0001, SBS > 12.23 MPa). In untreated controls, Panavia F showed higher bond strength than RelyX Unicem; the difference was significant (p = 0.016) in IPS e.max ZirCAD. The nontreated specimens and those treated with CoJet Sand exhibited a high percentage of adhesive and mixed A (primarily adhesive) failures, while the specimens treated with liners presented an increase in mixed A and mixed C (primarily cohesive) failures as well as some cohesive failure in the bulk of Lava Ceram for both cements.Conclusion: CoJet Sand and liner application effectively improved the SBS between zirconia and luting cements. This study suggests that different interactions between surface treatments and luting cements yield different SBS: in clinical practice, these interactions should be considered when combining luting cements with surface treatments in order to obtain the maximum bond strength to zirconia restorations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon.Materials and Methods: Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-mu m Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 mu m) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 mu m aluminum trioxide particles coated with silica (30 mu m SiO2) + core + veneer: silane; group 4: core: 30 mu m SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5 degrees C-55 degrees C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (alpha = 0.05).Results: Group 3 demonstrated significantly higher values (MPa) (8.6 +/- 2.7) than those of the other groups (3.2 +/- 3.1, 3.2 +/- 3, and 3.1 +/- 3.5 for groups 1, 2, and 4, respectively) (p < 0.001). All groups showed exclusively adhesive failure between the repair resin and the core zirconia. The incidence of cohesive failure in the ceramic was highest in group 3 (8 out of 10) compared to the other groups (0/10, 2/10, and 2/10, in groups 1, 2, and 4, respectively). SEM images showed that air abrasion on the zirconia core only also impinged on the veneering ceramic where the etching pattern was affected.Conclusion: Etching the veneer ceramic with HF gel and silica coating of the zirconia core followed by silanization of both substrates could be advised for the repair of the zirconia core / veneering ceramic complex.