953 resultados para supported intermediates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mannich反应是有机化学中最重要的碳-碳键形成反应,其产物是合成手性胺的通用中间体。间接Mannich反应使用不稳定的预制烯醇等当体,以未修饰的酮为给体的直接方法将增强Mannich反应的效率。针对低活性苯乙酮、氨甲酸酯参与的直接Mannich反应,研究工作将更具挑战性。 在前期实验中,我们发现Lewis酸-NbCl5可高效催化苯乙酮、芳香醛、芳香胺三组分直接Mannich反应,反应在环境温度下进行,高收率获得Mannich碱。这是以苯乙酮参与的Mannich反应中,实现催化量Lewis酸催化的首次报道。该方法高效且操作简单。但就底物而言,对易去保护、低活性的氨甲酸酯类底物收率较低。我们设想Brønst酸可解决此类底物问题。令人高兴的是,杂多酸可高效催化芳香酮、芳香醛、氨甲酸酯三组分直接Mannich反应,反应在环境温度下进行,高收率获得N-保护的β-氨基酮。该方法底物范围广泛,普适性强且催化剂便宜。 基于杂多酸在苯乙酮、氨甲酸酯为底物直接Mannich反应中的高效性,我们设想杂多酸与功能化的手性有机小分子-手性伯胺组装可解决催化剂回收问题,同时实现不对称催化。实验结果表明,非共价键固载手性伯胺不能有效催化苯乙酮为底物的直接Mannich反应,无论是对映选择性还是收率均较低。随后,我们以丙二酸酯及α-氨基砜为底物,以增强底物活性,同时绕开亚胺的不稳定性。辛可宁伯胺以氢键双活化底物,有效催化原位产生氨甲酸酯类亚胺与丙二酸酯的Mannich反应,高收率获得Mannich碱,ee值中等。 我们采用逐步解决问题的策略解决Mannich反应中的部分问题并在Lewis酸催化、Brønst酸催化、非共价键固载手性伯胺催化及手性伯胺氢键催化的直接Mannich反应中做出了有益探索。 The Mannich reactions are among the most fundamental carbon-carbon bond forming reactions in organic chemistry, and the reaction products are versatile intermediates in the synthesis of chiral amines. The indirect Mannich reaction uses preformed enolate equivalents. However the preformed enolates are unstable. Thus, a direct methodology based on unmodified ketone donors would enhance the efficiency of the Mannich reaction. Especially researches for the directed Mannich reactions of acetophenone, carbamate, which own lower activities, will be more challengeable. In the initial experiments, we found an efficient Lewis acid-NbCl5 which could catalyze three-component Mannich-type reaction of acetophenone, aromatic aldehydes and aromatic amines at ambient temperature in high yields. This is the first report that use catalytic amount of Lewis acid in the Mannich reactions of .acetophenone. The method reported is not only simple to operate but also efficient. However, as far as amines are concerned, the substrates of carbamates which can be deprotected more easily and less reactive than amines give low yields. We envisaged that Brønsted acid would resolve this problem. Pleasingly, heteropoly acids (HPA) efficiently catalyzed one-pot three-component Mannich reactions of aryl aldehydes, aryl ketones, and carbamates at ambient temperature and afforded the corresponding N-protected β-amino ketones in good to excellent yields. This method provides a novel and improved modification of three-component Mannich reactions in terms of a wide scope of aldehydes, ketones and carbamates, economic viability. Based on the high efficiency of heteropoly acids in the Mannich reaction of acetophenone and carbamates, we envisaged that if HPA were combined with functionalized chiral organocatalysts–chiral primary amines the assemblies may be able to act as recoverable asymmetric organocatalysts. The results of exprimentals showed that noncovalently supported heterogeneous chiral primary amine couldn’t effectively catalyze the Mannich reactions which own two the substrate of acetophenone regardless of enantioselectivity and yield. Then, we employed malonates and α-amido sulfones as substrates to enhance reactivity of substrates and circumvent the instability of imines. A moderately enantioselective and highly yield Mannich reaction with in situ generation of carbamate-protected imines from stable α-amido sulfones catalyzed by cinchonine primary amine catalyst was developed. It is noteworthy that cinchonine primary amine can dual activate substrates through H-bond activation and thus promote the reaction. We applied step-by-step-strategy to resolve some problems in the Mannich reactions and did some instructive explorations in Lewis acid catalysis, Brønst acid catalysis, noncovalently supported heterogeneous chiral primary amine catalysis and chiral primary amine as hydrogen-bond catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of bimetallic Pt-Ru catalysts prepared by co-impregnation of carbon black with ruthenium(III) chloride hydrate and hydrogen hexachloroplatinate(IV) hydrate were investigated by temperature-programmed reduction (TPR), chemisorption of hydrogen, transmission electron microscopy (TEM), microcalorimetry of adsorbed CO and a structure-sensitive reaction (n-hexane conversion). The results showed that the volumetric capacities for CO and H-2 adsorption is influenced in the bimetallic Pt-Ru catalysts by the formation of a Pt-Ru alloy. The n-hexane reaction revealed that the reaction mechanism for the pure Pt catalyst mainly occurs via cyclic isomerization and aromatization due to the presence of bigger Pt surface ensembles, whereas the Pt-Ru catalysts exhibited predominantly bond-shift isomerization by the diluting effect of Ru metal addition. The differential heats of CO chemisorption on Pt-Ru catalysts fell between the two monometallic Pt and Ru catalysts extremes. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attractive Fischer-Tropsch catalyst was prepared using an activated carbon as carrier to support cobalt based catalysts. Zr promoted Co/AC catalysts remarkably enhanced the activity and the selectivity toward diesel distillates and lower the methane selectivity. This modification may be attributed to specific behavior of activated carbon with high surface area and the weak interaction between metallic cobalt active sites and activated carbon. It was emphasized that the pore size of activated carbon played a very important role in restricting the growth of carbon chain to wax.