996 resultados para sulfato de cálcio
Resumo:
The purpose of this work was the production of ammonium sulfate double labeled with 15N and 34S ((15NH4)2(34)SO4)), employing the ion exchange technique in two different processes. The first one was carried out using Na2(34)SO4 and (15NH4)2SO4 previously enriched. It was possible to obtain about 54g of (15NH4)2(34)SO4 from 70.0g of Na2(34)SO4 and 64.2g of (15NH4)2SO4 . The second method involved the production of H2(34)SO4, by ion exchange, and its subsequent reaction with 15NH3(aq), using a distillation system, to yield 58 g of (15NH4)2(34)SO4 from 43.1 g of H2(34)SO4.
Resumo:
Natural or modified chondroitin sulfate was incorporated in to polymethacrylate to obtain isolated films. The addition of polysaccharide to synthetic polymers occurred at different rates. Isolated films were micro and macroscopically characterized and swelling index and water vapor transmission were determined. Results indicated changed transparency and flexibility, coupled to their dependence on increase in polysaccharide concentration. A similar occurrence was reported in the permeability to water vapor and swelling degree. Films composed of modified chondroitin sulfate, 90:10 concentration, showed hydration levels, permeability and morphological properties which allow them to be applied as excipients in the development of new drug delivery systems.
Resumo:
The crystallization of hydroxyapatite (HA) in aqueous solution can be described by the mechanism ACP -> OCP -> HA. In this work, it was studied the influence of K+, Mg2+, SO4(2-) and CO3(2-) ions in the formation of ACP and in its conversion to OCP, using biomimetic coatings on metallic substrates of commercially pure titanium (Ti c.p.). The results showed that Mg2+ and CO3(2-) ions favored both the formation of ACP and its conversion to OCP. Differently, K+ and SO4(2-) ions did not influence the formation of ACP and, consequently, interfered in the conversion to OCP.
Resumo:
Wet and dry (dust) deposition was measured in the Serra dos Órgãos National Park. VWM pH was 5.3. Non-sea-salt (nss) SO4(2-) comprised 97% of total SO4(2-). The molar ratio [2(nss-SO4(2-)) + NO3-]/[NH4+ + H+] was 1.1, suggesting that pH is predominantly controlled by H2SO4, HNO3, and NH3. Wet deposition of NH4+, NO3-, and nss-SO4(2-) was respectively 0.59, 0.25, and 0.30 kmol ha-1 yr-1. Assuming that dry deposition of N can comprise 30-50% of its total (dry + wet) deposition, the latter is estimated to be 1.2-1.7 kmol ha-1 yr-1 (17-24 kg N ha-1 yr-1).
Resumo:
Aragonite is a metastable polymorph of calcium carbonate. The calcareous exoskeletons of some organisms like corals or molluscs consist essentially of aragonite. The questions of how, and why these organisms prefer the thermodynamically unstable aragonite for the construction of their hard shells are discussed. The importance of the biomineralization process for the development of new materials is outlined. In the experimental part, a very simple synthesis of polycrystalline aragonite is performed, using carbonated mineral water available at the market. The synthesized aragonite is easily identified by its infrared spectrum.
Resumo:
Nutritional therapy with enteral diets became highly specialized in the last years. This work aims to study the effect of the components of a formulation, namely fiber, calcium and medium-chain triglycerides, for dialysability of minerals. Analysis of multiple variables was done using response surface methodology. The level curve showed that the tertiary interaction MCT-fiber-calcium was the one that presented the highest synergism in the formulation. The proportion of 33% MCT, 25% fiber and 42% calcium, gave the best formulation for availability of magnesium.
Resumo:
A simple and rapid conductometric method for captopril determination using copper(II) sulphate solution as titrant was developed. The method was based on the chemical reaction between captopril and Cu(II) ions yielding a precipitate. The conductance of the solution was monitored as a function of the added volume of titrant. The method was applied with success for captopril determination in three pharmaceutical formulations. The relative standard deviation for six successive measurements was smaller than 0.5%. Recovery values from three samples, ranging from 97.7 to 103%, were obtained.
Resumo:
The present work purposes the development of an analytical method for amitriptyline determination in pharmaceutical formulations using FIA system. It was based on interaction of amitriplyline with sodium lauryl sulphate in acid medium (pH 2.5) resulting in the ion-pair formation turbidimetrically detected at 410 nm. The fitting regression equation for range curve from 2.0 x 10-3 up to 3.2 x 10-3 mol L-1 was found to be analytical signal = -2.7417 + 0.1538 [amitriptyline] (r = 0.99991) with a detection limit of 1.8 x 10-3 mol L-1. The precision assessed as relative standard deviation (n = 10) was found to be 2.40 and 1.94%, for the respective concentration of amitriplyline 2.0 x 10-3 and 3.2 x 10-3 mol L-1 and the sample throughout was 60 h-1. The accuracy of method was successfully assessed in pharmaceutical formulation after comparison with a reference analytical method.
Resumo:
The oxidation of arsenic (As(III) to As(V)) in water samples was performed by heterogeneous photocatalysis using a TiO2 film immobilized inside a photochemical reactor. After oxidation, As(V) was removed from the water samples by coprecipitation with ferric sulfate. The final conditions of oxidation and arsenic removal (TiO2 film prepared with a suspension: 10% (w/v); pH: 7.0; oxidation time: 30 min and Fe3+ concentration: 50 mg L-1) were applied in natural water samples which were supplemented with 1.0 mg L-1 of As(III) to verify the influence of the matrix. After treatment, more than 99% of arsenic was removed from the water.
Resumo:
The use of thermoanalytical data in sample preparation is described as a tool to catch the students' attention to some details that can simplify both the analysis and the analytical procedure. In this case, the thermal decomposition of eggshells was first investigated by thermogravimetry (TGA). Although the classical procedures suggest long exposure to high temperatures, the TGA data showed that the decomposition of organic matter takes place immediately when the sample is heated up to 800 °C under air atmosphere. After decomposition, the calcium content was determined by flame atomic emission photometry and compared with the results obtained using classical volumetric titration with EDTA.
Resumo:
Samplings of atmospheric particulate matter (PM) were carried out between the months of March and April of 2007, simultaneously in two areas of Londrina, an urban (Historical Museum) and other rural (Farm School-UEL). PM was collected using the cascade impactor consisting of four impaction stages (0.25 to 10 μm). The results indicated that the fine fraction (PM2.5) represented a significant portion of the mass of PM10 (70 and 67% in the urban and rural places, respectively). Cl-, NO3- and SO4(2-) were determined by ion chromatography and the size distribution is presented. Natural and anthropogenic sources were suggested to the ionic components in the fine and coarse mode of PM.
Resumo:
The effect of sodium nitrate application in the reduction of biogenic sulphide was evaluated through a 2k complete factorial design, using as variable response the production of sulfide at intervals of incubation of 7, 14 and 28 days. The most effective condition for reducing the sulphide production (final concentrations from 0.4 to 1.6 mg S2- L-1) was obtained with an initial population of sulphate-reducing bacteria and nitrate-reducing bacteria of 10(4) MPN mL-1 and 427.5 mg L-1 nitrate. The results also suggested that the applications of nitrate to control the process of souring should follow a continuous scheme.
Resumo:
For decades the Hydroxyapatite (HA) was only bioceramic of calcium phosphate system used for bone replacement and regeneration, due to its similarity to the mineral phase of bones and teeth. Because its slow degradation, other calcium phosphate classified as biodegradable started to awaken interest, such as: amorphous calcium phosphate (ACP), octacalcium phosphate (OCP) and tricalcium phosphate (TCP). This work presents the evolution of the use of other calcium phosphates due to their better solubility than the HA, comparing their main physical-chemical and biological properties. Are also presented the main methods used to obtain bioceramic coatings on metal and polymer surfaces.
Resumo:
The influence of temperature (30 and 40 ºC) and soil humidity (20, 50 and 70% of water holding capacity) on the degradation of the herbicide diurom and the endosulfan metabolite, endosulfan sulfate was studied under laboratory conditions, in different soil layers (0-30, 30-38 and 38-83 cm) of an Oxisol (Yellow Latosol) collected in an agricultural area of Mato Grosso State, Brazil. Endosulfan sulfate was rapidly degraded under lower soil humidity, higher temperature and deeper soil layers. For diurom the opposite was observed as a consequence of its higher water solubility and lower soil sorption coefficient.
Resumo:
We investigated the impact of sulphate and the redox mediator Anthraquinone-2,6-disulfonate (AQDS) on the decolorization of the azo dyes Congo Red (CR) and Reactive Black 5 (RB5). In anaerobic reactors free of extra sulphate dosage, the color removal efficiency decreased drastically when the external electron donor ethanol was removed. In presence of an extra dosage of sulphate, CR decolourisations were 47.8% (free of AQDS) and 96.5% (supplemented with AQDS). The decolourisations achieved in both reactors with RB5 were lower than the ones found with CR. Finally, the biogenic sulphide contribution on azo dye reduction was negligiable.