893 resultados para structure health monitoring
Resumo:
This paper presents a new approach for damage detection in structural health monitoring systems exploiting the coherence function between the signals from PZT (Lead Zirconate Titanate) transducers bonded to a host structure. The physical configuration of this new approach is similar to the configuration used in Lamb wave based methods, but the analysis and operation are different. A PZT excited by a signal with a wide frequency range acts as an actuator and others PZTs are used as sensors to receive the signal. The coherences between the signals from the PZT sensors are obtained and the standard deviation for each coherence function is computed. It is demonstrated through experimental results that the standard deviation of the coherence between the signals from the PZTs in healthy and damaged conditions is a very sensitive metric index to detect damage. Tests were carried out on an aluminum plate and the results show that the proposed methodology could be an excellent approach for structural health monitoring (SHM) applications.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
Resumo:
Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.
Resumo:
This paper presents a novel time domain approach for Structural Health Monitoring (SHM) systems based on Electromechanical Impedance (EMI) principle and Principal Component Coefficients (PCC), also known as loadings. Differently of typical applications of EMI applied to SHM, which are based on computing the Frequency Response Function (FRF), in this work the procedure is based on the EMI principle but all analysis is conducted directly in time-domain. For this, the PCC are computed from the time response of PZT (Lead Zirconate Titanate) transducers bonded to the monitored structure, which act as actuator and sensor at the same time. The procedure is carried out exciting the PZT transducers using a wide band chirp signal and getting their time responses. The PCC are obtained in both healthy and damaged conditions and used to compute statistics indexes. Tests were carried out on an aircraft aluminum plate and the results have demonstrated the effectiveness of the proposed method making it an excellent approach for SHM applications. Finally, the results using EMI signals in both frequency and time responses are obtained and compared. © The Society for Experimental Mechanics 2014.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The electromechanical impedance (EMI) technique has been successfully used in structural health monitoring (SHM) systems on a wide variety of structures. The basic concept of this technique is to monitor the structural integrity by exciting and sensing a piezoelectric transducer, usually a lead zirconate titanate (PZT) wafer bonded to the structure to be monitored and excited in a suitable frequency range. Because of the piezoelectric effect, there is a relationship between the mechanical impedance of the host structure, which is directly related to its integrity, and the electrical impedance of the PZT transducer, obtained by a ratio between the excitation and the sensing signals.This work presents a study on damage (leaks) detection using EMI based method. Tests were carried out in a rig water system built in a Hydraulic Laboratory for different leaks conditions in a metallic pipeline. Also, it was evaluated the influence of the PZT position bonded to the pipeline. The results show that leaks can effectively be detected using common metrics for damage detection such as RMSD and CCDM. Further, it was observed that the position of the PZT bonded to the pipes is an important variable and has to be controlled.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS