992 resultados para strain-reduction
Resumo:
Traffic accidents often cause lane closure, and diminish stability of travel time as well as the level of road services. On the other hand, research on the implementation of ITS services aiming at the reduction of traffic accidents has made considerable progress lately. However there has been little discussion on the benefits obtained by traffic accident reduction from the view point of travel time reliability. Therefore, in this research, relationships between traffic accidents and travel time reliability are examined, and the benefit of traffic accident reduction is calculated based on the scheduling model under travel time uncertainties. The results show the significance of traffic accident reduction for the improvement of travel time reliability.
Resumo:
Capacity reduction programmes, in the form of buybacks or decommissioning, have had relatively widespread application in fisheries in the US, Europe and Australia. A common criticism of such programmes is that they remove the least efficient vessels first, resulting in an increase in average efficiency of the remaining fleet, which tends to increase the effective fishing power of the remaining fleet. In this paper, the effects of a buyback programme on average technical efficiency in Australia’s Northern Prawn Fishery are examined using a multi-output production function approach with an explicit inefficiency model. As expected, the results indicate that average efficiency of the remaining vessels was generally greater than that of the removed vessels. Further, there was some evidence of an increase in average scale efficiency in the fleet as the remaining vessels were closer, on average, to the optimal scale. Key factors affecting technical efficiency included company structure and the number of vessels fishing. In regard to fleet size, our model suggests positive externalities associated with more boats fishing at any point in time (due to information sharing and reduced search costs), but also negative externalities due to crowding, with the latter effect dominating the former. Hence, the buyback resulted in a net increase in the individual efficiency of the remaining vessels due to reduced crowding, as well as raising average efficiency through removal of less efficient vessels.
Resumo:
Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.
Accelerometer data reduction : a comparison of four reduction algorithms on select outcome variables
Resumo:
Purpose Accelerometers are recognized as a valid and objective tool to assess free-living physical activity. Despite the widespread use of accelerometers, there is no standardized way to process and summarize data from them, which limits our ability to compare results across studies. This paper a) reviews decision rules researchers have used in the past, b) compares the impact of using different decision rules on a common data set, and c) identifies issues to consider for accelerometer data reduction. Methods The methods sections of studies published in 2003 and 2004 were reviewed to determine what decision rules previous researchers have used to identify wearing period, minimal wear requirement for a valid day, spurious data, number of days used to calculate the outcome variables, and extract bouts of moderate to vigorous physical activity (MVPA). For this study, four data reduction algorithms that employ different decision rules were used to analyze the same data set. Results The review showed that among studies that reported their decision rules, much variability was observed. Overall, the analyses suggested that using different algorithms impacted several important outcome variables. The most stringent algorithm yielded significantly lower wearing time, the lowest activity counts per minute and counts per day, and fewer minutes of MVPA per day. An exploratory sensitivity analysis revealed that the most stringent inclusion criterion had an impact on sample size and wearing time, which in turn affected many outcome variables. Conclusions These findings suggest that the decision rules employed to process accelerometer data have a significant impact on important outcome variables. Until guidelines are developed, it will remain difficult to compare findings across studies
Resumo:
Does job control act as a stress-buffer when employees' type and level of work self-determination is taken into account? It was anticipated that job control would only be stress-buffering for employees high in self-determined and low in non-self-determined work motivation. In contrast, job control would be stress-exacerbating for employees who were low in self-determined and high in non-self-determined work motivation. Employees of a health insurance organization (N = 123) completed a survey on perceptions of role overload, job control, work self-determination, and a range of strain and engagement indicators. Results revealed that, when individuals high in self-determination perceived high job control, they experienced greater engagement (in the form of dedication to their work). In addition, when individuals high in non-self-determination perceived high job demands, they experienced more health complaints. A significant 3-way interaction demonstrated that, for individuals low in non-self-determination, high job control had the anticipated stress-buffering effect on engagement (in the form of absorption in their work). In addition, low job control was stress-exacerbating. However, contrary to expectations, for those high in non-self-determination, high job control was just as useful as low job control as a stress-buffer. The practical applications of these findings to the organizational context are discussed.
Resumo:
Karasek's Job Demand-Control model proposes that control mitigates the positive effects of work stressors on employee strain. Evidence to date remains mixed and, although a number of individual-level moderators have been examined, the role of broader, contextual, group factors has been largely overlooked. In this study, the extent to which control buffered or exacerbated the effects of demands on strain at the individual level was hypothesized to be influenced by perceptions of collective efficacy at the group level. Data from 544 employees in Australian organizations, nested within 23 workgroups, revealed significant three-way cross-level interactions among demands, control and collective efficacy on anxiety and job satisfaction. When the group perceived high levels of collective efficacy, high control buffered the negative consequences of high demands on anxiety and satisfaction. Conversely, when the group perceived low levels of collective efficacy, high control exacerbated the negative consequences of high demands on anxiety, but not satisfaction. In addition, a stress-exacerbating effect for high demands on anxiety and satisfaction was found when there was a mismatch between collective efficacy and control (i.e. combined high collective efficacy and low control). These results provide support for the notion that the stressor-strain relationship is moderated by both individual- and group-level factors.
Resumo:
Background Accelerometers have become one of the most common methods of measuring physical activity (PA). Thus, validity of accelerometer data reduction approaches remains an important research area. Yet, few studies directly compare data reduction approaches and other PA measures in free-living samples. Objective To compare PA estimates provided by 3 accelerometer data reduction approaches, steps, and 2 self-reported estimates: Crouter's 2-regression model, Crouter's refined 2-regression model, the weighted cut-point method adopted in the National Health and Nutrition Examination Survey (NHANES; 2003-2004 and 2005-2006 cycles), steps, IPAQ, and 7-day PA recall. Methods A worksite sample (N = 87) completed online-surveys and wore ActiGraph GT1M accelerometers and pedometers (SW-200) during waking hours for 7 consecutive days. Daily time spent in sedentary, light, moderate, and vigorous intensity activity and percentage of participants meeting PA recommendations were calculated and compared. Results Crouter's 2-regression (161.8 +/- 52.3 minutes/day) and refined 2-regression (137.6 +/- 40.3 minutes/day) models provided significantly higher estimates of moderate and vigorous PA and proportions of those meeting PA recommendations (91% and 92%, respectively) as compared with the NHANES weighted cut-point method (39.5 +/- 20.2 minutes/day, 18%). Differences between other measures were also significant. Conclusions When comparing 3 accelerometer cut-point methods, steps, and self-report measures, estimates of PA participation vary substantially.
Resumo:
Background A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. Methods PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. Results When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive of increased risk. Conclusion ST in combination with EGF directed a greater EMT via actin depolymerisation and focal contact size reduction, resulting in a loosening of cell-ECM attachment along with Snail1-Zeb1/δEF1 induction. This appeared fundamentally different to the EGF-induced EMT, highlighting the multiple pathways which can regulate EMT. Our findings add support for a functional role for Snail1 in invasive breast cancer.
Resumo:
The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.
Resumo:
This article elucidates and analyzes the fundamental underlying structure of the renormalization group (RG) approach as it applies to the solution of any differential equation involving multiple scales. The amplitude equation derived through the elimination of secular terms arising from a naive perturbation expansion of the solution to these equations by the RG approach is reduced to an algebraic equation which is expressed in terms of the Thiele semi-invariants or cumulants of the eliminant sequence { Zi } i=1 . Its use is illustrated through the solution of both linear and nonlinear perturbation problems and certain results from the literature are recovered as special cases. The fundamental structure that emerges from the application of the RG approach is not the amplitude equation but the aforementioned algebraic equation. © 2008 The American Physical Society.
Resumo:
The deformation of a rectangular block into an annular wedge is studied with respect to the state of swelling interior to the block. Nonuniform swelling fields are shown to generate these flexure deformations in the absence of resultant forces and bending moments. Analytical expressions for the deformation fields demonstrate these effects for both incompressible and compressible generalizations of conventional hyperelastic materials. Existing results in the absence of a swelling agent are recovered as special cases.
Resumo:
Sub-oxide-to-metallic highly-crystalline nanowires with uniformly distributed nanopores in the 3 nm range have been synthesized by a unique combination of the plasma oxidation, re-deposition and electron-beam reduction. Electron beam exposure-controlled oxide → sub-oxide → metal transition is explained using a non-equilibrium model.
Resumo:
Using density functional theory, we have investigated the catalytic properties of bimetallic complex catalysts PtlAum(CO)n (l + m = 2, n = 1–3) in the reduction of SO2 by CO. Due to the strong coupling between the C-2p and metal 5d orbitals, pre-adsorption of CO molecules on the PtlAum is found to be very effective in not only reducing the activation energy, but also preventing poisoning by sulfur. As result of the coupling, the metal 5d band is broadened and down-shifted, and charge is transferred from the CO molecules to the PtlAum. As SO2 is adsorbed on the catalyst, partial charge moves to the anti-σ bonding orbitals between S and O in SO2, weakening the S–O bond strength. This effect is enhanced by pre-adsorbing up to three CO molecules, therefore the S–O bonds become vulnerable. Our results revealed the mechanism of the excellent catalytic properties of the bimetallic complex catalysts.
Resumo:
The catalytic activities, to the reduction of SO2 by CO, of clusters PtlAum (l + m = 2) with or without preadsorbing CO molecules are investigated using first-principles density functional theory. We find that the PtAu(CO)n (n = 1–3) clusters show more excellent catalytic properties than either pure metallic catalysts. Preadsorption of CO to the catalysts could effectively avoid platinum-based catalyst sulfur poisoning; as more CO molecules preadsorbed to the catalysts, the energy barriers for the carbonyl sulfide (COS) molecule’s desorption from the catalyst are remarkably decreased. We propose an ideal catalytic cycle to simultaneously get rid of SO2 and CO over the catalysts PtAu(CO)3.
Resumo:
The aim of this paper is to determine the strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes, in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of these single cells at four different strain-rates. These results were then employed in inverse finite element analysis (FEA) using Modified Standard neo-Hookean Solid (MSnHS) idealization of these cells to determine their mechanical properties. In addition, a FEA model with a newly developed spring element was employed to accurately simulate AFM evaluation in this study. We report that both cytoskeleton (CSK) and intracellular fluid govern the strain-rate-dependent mechanical property of living cells whereas intracellular fluid plays a predominant role on fixed cells’ behavior. In addition, through the comparisons, it can be concluded that osteocytes are stiffer than chondrocytes at all strain-rates tested indicating that the cells could be the biomarker of their tissue origin. Finally, we report that MSnHS is able to capture the strain-rate-dependent mechanical behavior of osteocyte and chondrocyte for both living and fixed cells. Therefore, we concluded that the MSnHS is a good model for exploration of mechanical deformation responses of single osteocytes and chondrocytes. This study could open a new avenue for analysis of mechanical behavior of osteocytes and chondrocytes as well as other similar types of cells.